25 research outputs found

    Long-term psychological outcomes following stroke: the OX-CHRONIC study

    Get PDF
    Background: Stroke survivors rate longer-term (> 2 years) psychological recovery as their top priority, but data on how frequently psychological consequences occur is lacking. Prevalence of cognitive impairment, depression/anxiety, fatigue, apathy and related psychological outcomes, and whether rates are stable in long-term stroke, is unknown. Methods: N = 105 long-term stroke survivors (M [SD] age = 72.92 [13.01]; M [SD] acute NIH Stroke Severity Score = 7.39 [6.25]; 59.0% Male; M [SD] years post-stroke = 4.57 [2.12]) were recruited (potential N = 208). Participants completed 3 remote assessments, including a comprehensive set of standardized cognitive neuropsychological tests comprising domains of memory, attention, language, and executive function, and questionnaires on emotional distress, fatigue, apathy and other psychological outcomes. Ninety participants were re-assessed one year later. Stability of outcomes was assessed by Cohen’s d effect size estimates and percent Minimal Clinically Important Difference changes between time points. Results: On the Montreal Cognitive Assessment 65.3% scored  Conclusion: Nearly half of participants > 2 years post-event exhibited psychological difficulties including domains of cognition, mood, and fatigue, which impact long-term quality of life. Stroke is a chronic condition with highly prevalent psychological needs, which require monitoring and intervention development

    A roadmap for research in post-stroke fatigue:Consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable

    Get PDF
    Rationale: Fatigue affects almost half of all people living with stroke. Stroke survivors rank understanding fatigue and how to reduce it as one of the highest research priorities. Methods: We convened an interdisciplinary, international group of clinical and pre-clinical researchers and lived experience experts. We identified four priority areas: (1) best measurement tools for research, (2) clinical identification of fatigue and potentially modifiable causes, (3) promising interventions and recommendations for future trials, and (4) possible biological mechanisms of fatigue. Cross-cutting themes were aphasia and the voice of people with lived experience. Working parties were formed and structured consensus building processes were followed. Results: We present 20 recommendations covering outcome measures for research, development, and testing of new interventions and priority areas for future research on the biology of post-stroke fatigue. We developed and recommend the use of the Stroke Fatigue Clinical Assessment Tool. Conclusions: By synthesizing current knowledge in post-stroke fatigue across clinical and pre-clinical fields, our work provides a roadmap for future research into post-stroke fatigue

    A roadmap for research in post-stroke fatigue: consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable

    Get PDF
    Rationale: Fatigue affects almost half of all people living with stroke. Stroke survivors rank understanding fatigue and how to reduce it as one of the highest research priorities. Methods: We convened an interdisciplinary, international group of clinical and pre-clinical researchers and lived experience experts. We identified four priority areas: (1) best measurement tools for research, (2) clinical identification of fatigue and potentially modifiable causes, (3) promising interventions and recommendations for future trials, and (4) possible biological mechanisms of fatigue. Cross-cutting themes were aphasia and the voice of people with lived experience. Working parties were formed and structured consensus building processes were followed. Results: We present 20 recommendations covering outcome measures for research, development, and testing of new interventions and priority areas for future research on the biology of post-stroke fatigue. We developed and recommend the use of the Stroke Fatigue Clinical Assessment Tool. Conclusions: By synthesizing current knowledge in post-stroke fatigue across clinical and pre-clinical fields, our work provides a roadmap for future research into post-stroke fatigue

    Exploratory Cohort Study of Associations between Serum C - Reactive Protein and Fatigue after Stroke

    Get PDF
    Post-stroke fatigue is a common and distressing problem but little is known about its biological mechanisms. This cohort study was to investigate associations between C-reactive protein (CRP) and fatigue after stroke.Patients were assessed at one, six and 12 months after their stroke onset, with the Fatigue Assessment Scale, a case definition of post-stroke fatigue, Hospital Anxiety and Depression Scale, and daily step counts. Blood samples were collected at each assessment and the CRP level was determined by a standard CRP immunoassay. Cross-sectional associations between CRP and fatigue at each time point were determined by Pearson correlation coefficient and independent-samples t-test. Whether CRP levels at one month predict fatigue scores at six and 12 months was explored by multiple linear regression, with anxiety, depression, and daily step counts as covariates.Sixty-five patients (mean age 67 years, 65% men) were included: 61 at one month, 49 at six months, and 41 at 12 months. CRP levels and fatigue scores were not associated at one month (p = 0.88) or 12 months (p = 0.56), but weakly associated at six months (r = 0.27, p = 0.04); however, this association was no longer significant (p = 0.14) after controlling for the effects of covariates. The CRP level was not associated with the fulfilment of case definition of post-stroke fatigue at any time points (all p > 0.05). The CRP level at one month was not a significant predictor for fatigue levels at either six months (p = 0.93) or 12 months (p = 0.78).There is insufficient evidence for the association between CRP and PSF in stroke patients. Future studies with larger sample sizes and controlling for potential confounders are needed to investigate whether this association exists

    The fatigue conundrum

    No full text

    MEP modulation by visual experience.

    No full text
    <p>y-axis: MEP amplitudes (z-transformed, mean ± SE, N = 29) of the forearm (ECR, left figure) and hand (FDI, right figure). x-axis: visually experienced ballet spectators (black columns), Indian dance spectators (grey columns), and novices (white columns) during watching ballet specific movements (left) and Indian dance specific movements (right) performances (each as a contrast to non-dance control performance). * = significant at <i>P</i><0.050.</p

    Visual experience for different movement styles.

    No full text
    <p>y-axis: z-transformed ratings of visual experience (mean ± SE). x-axis: visual experience of ballet spectators (N = 12) in black columns, Indian dance spectators (N = 9) in grey columns, and novices (N = 8) in light grey columns for different types of performances (ballet, Indian dance, and acting control). The ratings confirmed our experimental groups: the level of acquired visual experience was dependent on the spectator group. *** = significant at <i>P</i><0.001, * = significant at <i>P</i><0.050.</p

    Action observation.

    No full text
    <p>y-axis: z-transformed MEP amplitudes (mean ± SE, N = 29). x-axis: rest (eyes closed, black columns), ballet (light stripes), Indian dance (bold stripes), and acting (dots) in ECR (left) and FDI (right). *** = significant at <i>P</i><0.001, ** = significant at <i>P</i><0.010.</p
    corecore