122 research outputs found

    Theory and Applications of X-ray Standing Waves in Real Crystals

    Full text link
    Theoretical aspects of x-ray standing wave method for investigation of the real structure of crystals are considered in this review paper. Starting from the general approach of the secondary radiation yield from deformed crystals this theory is applied to different concreat cases. Various models of deformed crystals like: bicrystal model, multilayer model, crystals with extended deformation field are considered in detailes. Peculiarities of x-ray standing wave behavior in different scattering geometries (Bragg, Laue) are analysed in detailes. New possibilities to solve the phase problem with x-ray standing wave method are discussed in the review. General theoretical approaches are illustrated with a big number of experimental results.Comment: 101 pages, 43 figures, 3 table

    Randomly Charged Polymers, Random Walks, and Their Extremal Properties

    Full text link
    Motivated by an investigation of ground state properties of randomly charged polymers, we discuss the size distribution of the largest Q-segments (segments with total charge Q) in such N-mers. Upon mapping the charge sequence to one--dimensional random walks (RWs), this corresponds to finding the probability for the largest segment with total displacement Q in an N-step RW to have length L. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large N limit. In particular, the size of the longest neutral segment has a distribution with a square-root singularity at l=L/N=1, an essential singularity at l=0, and a discontinuous derivative at l=1/2. The behavior near l=1 is related to a another interesting RW problem which we call the "staircase problem". We also discuss the generalized problem for d-dimensional RWs.Comment: 33 pages, 19 Postscript figures, RevTe

    Real-Time Fluorescence Loop Mediated Isothermal Amplification for the Diagnosis of Malaria

    Get PDF
    BACKGROUND: Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. METHODOLOGY AND SIGNIFICANT FINDINGS: Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. CONCLUSION: This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs

    A framework for the probabilistic analysis of meteotsunamis

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Natural Hazards 74 (2014): 123-142, doi:10.1007/s11069-014-1294-1.A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed

    Superelasticity in beta titanium alloys with nitrogen addition

    No full text

    Editorial on Special Issue “New Era in the Volume Phase Transition of Gels”

    No full text
    The Special Issue of gels titled “Advancements in Gel Science” has been published from MDPI in 2019 [...
    corecore