128 research outputs found

    Rer1p competes with APH-1 for binding to nicastrin and regulates γ-secretase complex assembly in the early secretory pathway

    Get PDF
    The γ-secretase complex, consisting of presenilin, nicastrin, presenilin enhancer-2 (PEN-2), and anterior pharynx defective-1 (APH-1) cleaves type I integral membrane proteins like amyloid precursor protein and Notch in a process of regulated intramembrane proteolysis. The regulatory mechanisms governing the multistep assembly of this “proteasome of the membrane” are unknown. We characterize a new interaction partner of nicastrin, the retrieval receptor Rer1p. Rer1p binds preferentially immature nicastrin via polar residues within its transmembrane domain that are also critical for interaction with APH-1. Absence of APH-1 substantially increased binding of nicastrin to Rer1p, demonstrating the competitive nature of these interactions. Moreover, Rer1p expression levels control the formation of γ-secretase subcomplexes and, concomitantly, total cellular γ-secretase activity. We identify Rer1p as a novel limiting factor that negatively regulates γ-secretase complex assembly by competing with APH-1 during active recycling between the endoplasmic reticulum (ER) and Golgi. We conclude that total cellular γ-secretase activity is restrained by a secondary ER control system that provides a potential therapeutic value

    NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization

    Get PDF
    Here, we report on the identification of nucleolar spindle–associated protein (NuSAP), a novel 55-kD vertebrate protein with selective expression in proliferating cells. Its mRNA and protein levels peak at the transition of G2 to mitosis and abruptly decline after cell division. Microscopic analysis of both fixed and live mammalian cells showed that NuSAP is primarily nucleolar in interphase, and localizes prominently to central spindle microtubules during mitosis. Direct interaction of NuSAP with microtubules was demonstrated in vitro. Overexpression of NuSAP caused profound bundling of cytoplasmic microtubules in interphase cells, and this relied on a COOH-terminal microtubule-binding domain. In contrast, depletion of NuSAP by RNA interference resulted in aberrant mitotic spindles, defective chromosome segregation, and cytokinesis. In addition, many NuSAP-depleted interphase cells had deformed nuclei. Both overexpression and knockdown of NuSAP impaired cell proliferation. These results suggest a crucial role for NuSAP in spindle microtubule organization

    Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway

    Get PDF
    Presenilin 1 (PS1) interacts with telencephalin (TLN) and the amyloid precursor protein via their transmembrane domain (Annaert, W.G., C. Esselens, V. Baert, C. Boeve, G. Snellings, P. Cupers, K. Craessaerts, and B. De Strooper. 2001. Neuron. 32:579–589). Here, we demonstrate that TLN is not a substrate for γ-secretase cleavage, but displays a prolonged half-life in PS1−/− hippocampal neurons. TLN accumulates in intracellular structures bearing characteristics of autophagic vacuoles including the presence of Apg12p and LC3. Importantly, the TLN accumulations are suppressed by adenoviral expression of wild-type, FAD-linked and D257A mutant PS1, indicating that this phenotype is independent from γ-secretase activity. Cathepsin D deficiency also results in the localization of TLN to autophagic vacuoles. TLN mediates the uptake of microbeads concomitant with actin and PIP2 recruitment, indicating a phagocytic origin of TLN accumulations. Absence of endosomal/lysosomal proteins suggests that the TLN-positive vacuoles fail to fuse with endosomes/lysosomes, preventing their acidification and further degradation. Collectively, PS1 deficiency affects in a γ-secretase–independent fashion the turnover of TLN through autophagic vacuoles, most likely by an impaired capability to fuse with lysosomes

    The PIKfyve complex regulates the early melanosome homeostasis required for physiological amyloid formation

    Get PDF
    International audienceThe metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex,whose mutations are associated with hypopigmentation in mice. These pigmentationdefects indicate a key but yet unexplored physiological relevance of this complex inthe biogenesis of melanosomes. Here we show that PIKfyve activity regulatesformation of amyloid matrix composed of PMEL protein within early endosomes,called stage I melanosomes. PIKfyve activity controls the membrane remodeling ofstage I melanosomes that increases PMEL abundance and impairs its sorting andprocessing. PIKfyve activity also affects stage I melanosome kiss-and-runinteractions with lysosomes that is required for PMEL amyloidogenesis andestablishment of melanosome identity. Mechanistically, PIKfyve activity promotes theformation and membrane tubules from stage I melanosomes and their release bymodulating endosomal actin branching. Together our data indicate that PIKfyveactivity is a key regulator of the melanosomal import-export machinery that fine tunesthe formation of functional amyloid fibrils in melanosomes and the maintenance ofmelanosome identity

    A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes

    Get PDF
    A methodology for rapid, high-purity isolation of plasma membranes using superparamagnetic nanoparticles is described. The method is illustrated with high-resolution proteomic, glycomic and lipidomic analyses of presenilin-deficient cells

    ATP13A3 is a major component of the enigmatic mammalian polyamine transport system

    Get PDF
    Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG

    A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics : the case of NPC1 deficiency

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions
    corecore