93 research outputs found

    Hidden Markov Models for Malware Classification

    Get PDF
    Malware is a software which is developed for malicious intent. Malware is a rapidly evolving threat to the computing community. Although many techniques for malware classification have been proposed, there is still the lack of a comprehensible and useful taxonomy to classify malware samples. Previous research has shown that hidden Markov model (HMM) analysis is useful for detecting certain types of malware. In this research, we consider the related problem of malware classification based on HMMs. We train HMMs for a variety of malware generators and a variety of compilers. More than 9000 malware samples are then scored against each of these models and the malware samples are separated into clusters based on the resulting scores. We analyze the clusters and show that they correspond to certain characteristics of malware. These results indicate that HMMs are an effective tool for the challenging task of automatically classifying malware

    Improving the bioremediation of phenolic wastewaters by Trametes versicolor

    Get PDF
    The successful bioremediation of a phenolic wastewater by Trametes versicolor was found to be dependent on a range of factors including: fungal growth, culture age and activity and enzyme (laccase) production. These aspects were enhanced by the optimisation of the growth medium used and time of addition of the pollutant to the fungal cultures. Different media containing ‘high’ (20 g/L), ‘low’ (2 g/L) and ‘sufficient’ (10 g/L) concentrations of carbon and nitrogen sources were investigated. The medium containing both glucose and peptone at 10 g/L resulted in the highest Growth Related Productivity (the product of specific yield and μ) of laccase (1.46 Units of laccase activity)/gram biomass/day and was used in all further experiments. The use of the guaiacol as an inducer further increased laccase activity 780% without inhibiting growth; similarly the phenolic effluent studied boosted activity almost 5 times. The timing of the addition of the phenolic effluent was found to have important consequences in its removal and at least 8 days of prior growth was required. Under these conditions, 0.125 g phenol/g biomass and 0.231 g o-cresol/g biomass were removed from solution per day

    Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate

    Get PDF
    Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.Spanish Ministry of Education and Science; AEA Technology Environment; Nova Energie; The Swedish Gas Centre; University of Southern Denmark

    Unified Analysis Of Biofilm Kinetics - Discussion

    No full text

    Unsteady-state biofilm kinetics

    No full text

    Solidification and Stabilization of Spent Pine-cone Biochar using Chemically Bonded Phosphate Cement

    No full text
    Spent biochar is produced after adsorption of heavy metal which is hazardous by nature. A suitable disposal technique is required to prevent the leaching of heavy metals from spent biochar into the environment. This study highlights the solidification and stabilization (S/S) of copper loaded spent pine-cone biochar by chemically bonded phosphate cement (CBPC). The response surface methodology (RSM) was used to conduct S/S experiments in order to evaluate the compressive strength of CBPC products. The CBPC samples were prepared by varying biochar content (5-50 wt. %); W:S (0.15-0.3) and curing time(3-28d). Results illustrated that CBPC products containing biochar had higher compressive strength upto 12.8 MPa in comparison to CBPC without biochar i.e., upto 10.8 MPa. XRD and SEM analysis confirmed the presence of K-struvite (MgKPO4.6H2O), copper containing phases (Ca-Cu-Si), copper phosphate precipitates (Cu3(PO4)2) and filling of pore spaces by spent biochar. Highest compressive strength of 12.8 MPa was obtained at an optimized biochar content of 25%, W:S of 0.18 and curing time of 28 d. The evaluation of leaching potential by TCLP illustrated that stabilization of Cu (II) upto 99.9% was achieved in CBPC product. The risk assessment study revealed that there is no significant danger due to leaching of heavy metals from final CBPC product indicating that it can be readily disposed in the hazardous landfill sites
    corecore