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ABSTRACT

Hidden Markov Models for Malware Classification

by Chinmayee Annachhatre

Malware is a software which is developed for malicious intent. Malware is a

rapidly evolving threat to the computing community. Although many techniques for

malware classification have been proposed, there is still the lack of a comprehensible

and useful taxonomy to classify malware samples.

Previous research has shown that hidden Markov model (HMM) analysis is useful

for detecting certain types of malware. In this research, we consider the related

problem of malware classification based on HMMs. We train HMMs for a variety of

malware generators and a variety of compilers. More than 9000 malware samples are

then scored against each of these models and the malware samples are separated into

clusters based on the resulting scores. We analyze the clusters and show that they

correspond to certain characteristics of malware. These results indicate that HMMs

are an effective tool for the challenging task of automatically classifying malware.
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CHAPTER 1

Introduction

Malicious software is called malware. Malware can steal sensitive data from a

computer or it can infect files one after the other one file, then another, and spread the

infection throughout the computer. Malware needs to be caught and removed from the

infected computer in time to avoid the leakage of sensitive data or any other malicious

activity in the computer. In recent years smartphones have started to become more

popular and are one of the preferred devices for most consumers across the world. The

widespread use of smartphones along with continuous internet connectivity and the

“always on” paradigm makes them a lucrative target for malware attacks. Malware

includes all families of viruses, computer worms, Trojans, backdoor, spyware, adware,

etc. See Chapter 2 for more details. According to [43], “malware or malicious code is a

rapidly evolving threat to the computing community. Zero-day malware are exploiting

vulnerabilities very soon after being discovered and are spreading quickly. However,

anti-virus tools, which are the most widely used countering mechanism, are unable

to cope with this. They are based on signatures which need to be computed for new

malware strains. After a new malware strikes and before the signature is found, there

is a sufficient time for the malware to perform its damage.” Hackers fine-tune their

malware against antivirus software and make their code harder to detect. Various

alternative malware detection techniques are also available. These are elaborated in

Chapter 2. By far, there are many techniques proposed for malware classification.

However, there is still the lack of a comprehensible and useful taxonomy to classify

malware samples. We have dealt with the problem of malware classification in this

project.
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Malware authors and distributors have been taking advantage of exploit kits

in order to spread malware rapidly. By far, blackhole is the most significant and

the leading exploit kit [16]. The Blackhole Exploit Kit is one of the most popular

attack tools used to infect Web users with malware. Its purpose is to deliver a

malicious payload to a victim’s computer. The users are redirected from compromised

websites to Blackhole landing pages hosted on malicious servers to install malware on

computers with vulnerable software [16].

One of the world’s most sophisticated malware worm, Stuxnet, was discovered

in June 2010 targeting industrial control systems. It was created to attack Iran’s

nuclear facilities. It initially spreads through Microsoft Windows and targets Siemens

industrial control systems. Its main aim was to reprogram the industrial control

systems in a stealthy way in order to cause damage. It utilized zero-day exploits,

a Windows and a programmable logic controller (PLC) rootkit, antivirus evasion,

process injection and hooking techniques, network spreading, updates using P2P and

a command and control interface [45].

Koobface is a multi-platform computer worm that originally targets users of so-

cial networking websites like Facebook, Skype, Twitter, hi5 etc. It gathers login

information for such sites [5]. It does not collect any sensitive financial data [44].

The Koobface threat comprises several component malware files that work together

to form and maintain the Koobface botnet. This threat model enables Koobface to

update its existing components on an affected system, add new ones or stop updat-

ing nonworking modules [5]. Koobface cleverly uses social networking sites’ internet

cookies to identify what sites an affected user is a member of in order to access the

user’s social network account and to send Koobface-related messages on the affected

social-networking site [5].
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This shows that malware is a very serious threat that is expanding rapidly day-by-

day. However, there is still a lack of comprehensible and useful taxonomy to classify

malware. Malware taxonomy is useful in several ways. Firstly, it can allow faster

response to new threats – If the new malware can fit in the existing classification, the

anti-malware detection and removal are already known. Hence, the new malware can

be removed with the known techniques. If it does not fit into the existing classification,

the known techniques of malware detection and removal will not work. Hence, the

new techniques need to be found out [2]. Secondly, malware taxonomy helps in better

understanding of malware activities. It might help us in knowing the functionality of

the malware and their relationship with other malware. In this research, we attempt

to resolve the problem of malware classification based on HMMs. Our technique is

inspired by the approach followed in [3]. We train HMMs for a variety of malware

generators and a variety of compilers. More than 9000 malware samples are then

scored against each of these models and the malware samples are separated into

clusters based on the resulting scores. We analyze the clusters and show that they

correspond to certain characteristics of malware. These results indicate that HMMs

are an effective tool for the challenging task of automatically classifying malware.

This paper is organized as follows: Chapter 2 includes definitions and information

on the types of malware and different malware detection strategies. Chapter 3 gives

an overview of the previous work on the malware classification. Chapter 4 explains

the k-means clustering algorithm and other alternatives available. Chapter 5 includes

the implementation of k-means clustering algorithm used for malware classification

in detail. Chapter 6 includes the experiments and results, and the benefits of the

clustering method. Chapter 7 ends with the conclusion and suggests future work.
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CHAPTER 2

Malware and Detection Techniques

2.1 Malware

As mentioned in Chapter 1, malware is a software program developed to perform

malicious activities on a computer. There can be any reasons for writing malware

varying from simple pranks to serious organized internet crimes. The early infectious

programs (also the first Internet Worm, Morris Worm) were written as pranks [30].

Now-a-days, malware is widely used to steal confidential personal, financial, business

information. Figure 1 shows how the malware is rapidly increasing in volume day-by-

day. The x-axis in Figure 1 indicates the year and the y-axis indicates the number of

malware samples generated in the specified year on the x-axis.

Figure 1: Malware Growth [33]

As mentioned in Chapter 1, malware includes all families of viruses, computer

worms, Trojans, backdoor, spyware, adware etc. A brief overview of different types

of malware is given below:
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2.1.1 Virus

A virus is a type of malware that replicates itself by inserting copies or modified

copies of itself into other programs. They can live anywhere. It can live on the boot

sector. If it lives on the boot sector, it can take control before anything else [26]. As

mentioned in [4], “it establishes itself before any antivirus software starts or operating

system security is enabled.” It can also live in the memory. It can enter the computer

via email, internet or different types of external storage media like flash drives, floppy

disks. As pointed out in [32], “They have the ability to reproduce infecting other files

and programs. When they are run, they are able to carry out a range of annoying or

damaging actions in your computer.” Virus writers constantly modify their software

to evade the detection techniques. The prominent methods to evade the detection

techniques are encryption, polymorphism and metamorphism. These are described

in Figure 2.

Figure 2: Simple Virus [13]

2.1.1.1 Encrypted Virus

Antivirus software searches for a signature (a specific bit string) for virus detec-

tion. The simplest method to hide the virus body (signature) is to encrypt it with

different encryption keys. As a result of this, the detection of a virus becomes a

difficult task. The idea of an encrypted virus is to encrypt the signature in order

to evade signature detection. However, it is still possible to search for an encrypted

signature too. Thus, the encrypted virus is not a reliable way of evading signature

5



detection. The only part that is constant in the encrypted virus is the decryptor loop.

Antivirus software will exploit this fact for detection, so the next logical development

is to change the decryptor loop’s code with each infection [4]. The figure 3 shows

graphical representation for the encrypted virus.

Figure 3: Encrypted Virus [13]

2.1.1.2 Polymorphic Virus

The above problem of non-decrypted decryptor loop is solved in polymorphism.

The decryptor loop is morphed in each generation. According to [4], “A polymorphic

virus has, for all practical purposes, an infinite number of decryptor loop variations.

Tremor, for example, has almost six billion possible decryptor loops! Polymorphic

viruses clearly can’t be detected by listing all the possible combinations.” The tech-

niques such as emulation can be used for polymorphic virus detection. Figure 4 shows

graphical representation for the polymorphic virus.

Figure 4: Polymorphic Virus [13]

2.1.1.3 Metamorphic Virus

Virus writers modified the malware furthermore to avoid emulation detection.

The metamorphic virus is also called as body polymorphic virus. The appearance of

the virus changes before infecting any system. The detection of a metamorphic virus

is very challenging. The morphed virus has the same functionality but a different
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structure. Hence the detection of metamorphic virus is difficult. Figure 5 shows

graphical representation for the polymorphic virus.

Figure 5: Metamorphic Virus [13]

2.1.2 Worm

A computer worm is a standalone malware computer program that replicates

itself in order to spread to other computers [14]. As pointed out in [40], “worms

are programs that replicate themselves from system to system without the use of a

host file. This is in contrast to viruses, which requires the spreading of an infected

host file.” Worms replicate themselves damaging files, but can reproduce rapidly,

saturating a network and causing it to collapse. Some of the examples of the notorious

worms sent via email are: Navidad, Pretty Park, Happy99, ExploreZip [32].

2.1.3 Trojan

A Trojan is a non-self-replicating type of malware which appears to perform a

desirable function but instead drops a malicious payload [40]. An important difference

between Trojan and a virus is that the Trojan does not replicate itself [40]. They pose

as legitimate programs that users may recognize and want to use [41]. When these

are executed, they install other programs on the computer which can be harmful [32].

The Trojans have the capacity of deleting files, destroying information on the hard

drive, or open a backdoor to the security systems [32]. Some examples of Trojans are

Backdoor, Crack2000, KillCMOS and BetBus [32].
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2.1.4 Trapdoor/Backdoor

A trapdoor/backdoor is a program which bypasses the security check [4]. This

allows a malicious user to carry out actions on the affected computer that can com-

promise user confidentiality or impede the operations carried out [32]. The actions

that backdoor allow malicious users to carry out can be extremely damaging. They

could allow them to delete files or destroy all the information on the hard disk, cap-

ture confidential data and send it out to an external address or open communications

ports, allowing remote control of the computer. Some examples of backdoor are:

Orifice2K.sfx, Bionet.318, Antilam y Subseven.213 [32].

We have not used these families as the target categories for our classification of

malware. The reason for this is that if an unknown malware is classified into these

families, the detection and removal strategies for that particular malware will be not

known, since this classification is too generalized. Even if there are detection and

removal strategies for these families, there is no way of determining this information.

Instead, we used the information for malware family types provided in the dataset.

2.2 Malware Detection Techniques

As malware writers fine-tune their software by making it better to evade signa-

ture detection, the anitivirus companies are improving their detection techniques as

well. The following sections describe the signature based detection, anomaly based

detection and hidden Markov model based detection strategies.

2.2.1 Signature Based Detection

Signature based detection is a simple and most commonly used technique in

antivirus software. They are popular because of accurate detection, simplicity and

8



speed [37]. In signature based detection, the scanner scans each executable and looks

for specific string or pattern of bits (signatures). Antivirus software has a database of

signatures for different viruses. By comparing the signature, it detects the virus. The

disadvantage is that only the known malware can be detected. If the signature is not

unknown, malware cannot be detected. The signature file must be kept up to date.

By using simple code obfuscation techniques, malware can easily evade the signature

based detection [34].

2.2.2 Anomaly Based Detection

The problem of detecting new malwares in signature based detection can be

overcome using anomaly based detection. Heuristic methods are implemented to

detect anomalous behavior. This technique comprises of two phases - the training

phase and the detection phase. In the training phase, the model is trained with the

normal behavior. Anything other than the normal behavior is considered as malicious

behavior [17]. However, there can be more false positives in this technique [37].

2.2.3 Hidden Markov Model Based Detection

Hidden Markov models (HMMs) are generally used for statistical pattern anal-

ysis. They can be used in speech recognition, malware detection [35] and biological

sequence analysis [24]. The following sections give an overview of the introduction to

HMM and its usage in detection of malware.

2.2.3.1 Introduction to HMM

A statistical model that has states and known probabilities of the state transitions

is called a Markov model [38]. In such a Markov model, the states are visible to

9



the observer. In contrast, a hidden Markov model (HMM) has states that are not

directly observable [35]. HMM is a machine learning technique. HMM acts as a state

machine. Every state is associated with a probability distribution for observing a set

of observation symbols. The transition between the states have fixed probabilities.

We can train an HMM using the observation sequences to represent a set of data [38].

We can match an observation sequence against a trained HMM to determine the

probability of seeing such a sequence. If the probability is high, the observation

sequence is similar to the training sequences. HMMs are used in protein modeling [24].

HMM can also be used to detect certain types of software piracy detection [22]. As

mentioned in [38], the following table shows the notations used in the hidden Markov

models:

T = length of the observation sequence

N = number of states in the model

M = number of distinct observation symbols

Q = distinct states of the Markov Model

V = set of possible observations

A = state transition probability matrix

B = observation probability matrix

π = initial state distribution

O = observation sequence

A hidden Markov model is defined by the matrices A, B and π. An HMM is

denoted as λ = (A,B, π). Figure 6 represents a generic view of a hidden Markov

model.

The following three problems can be solved efficiently using the HMM algorithms:

10



Markov process: X0 X1 X2 · · · XT−1
-A -A -A -A

?

B

?

B

?

B

?

B

Observations: O0 O1 O2 · · · OT−1

Figure 6: A Hidden Markov Model [38]

Problem 1: Given a model λ = (A,B, π) and an observation sequence O, we

need to find P (O|λ). That is, an observation sequence that can be scored to see how

well it fits a given model [38].

Problem 2: Given a model λ = (A,B, π) and an observation sequence O, we

can determine an optimal state sequence for the Markov model. That is, the most

likely hidden state sequence can be uncovered [38].

Problem 3: Given O, N , M , we can find a model λ that maximizes probability

of O. This is the training of a model in order to best fit an observation sequence [38].

In this project, the algorithms for Problems 1 and 3 are used. First we train an

HMM to represent a set of data, which is in the form of observation sequences. We

have trained the models using a variety of compilers and malware generators. This

is equivalent to using the algorithm for Problem 3. Then the resulting HMM can

be used to score the malware samples against the model. This is equivalent to using

the algorithm for Problem 1. These three problems can be efficiently solved by the

following three algorithms:

• The Forward algorithm.

• The Backward algorithm.

11



• The Baum-Welch reestimation algorithm.

The forward-backward algorithm is for calculating the probability of being in a state

qi at time t given an observation sequence O [38]. The forward algorithm, or α pass,

determines P (O|λ) [38]. The algorithm can be stated as follows.

1. For t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1

2. αt(i) = P (O0,O1, . . . ,Ot, xt = qi|λ)

The probability of the partial observation sequence up to time t is αt(i). Using the

forward algorithm, P (O|λ) can be computed as follows [38].

1. Let α0(i) = πibi(O0), for i = 0, 1, . . . , N − 1

2. For t = 1, 2, . . . , T − 1 and i = 0, 1, . . . , N − 1 compute

αt(i) =
N−1∑
j=1

αt−1(j)aij)bi(Ot)

3. Then P (O|λ) = (
∑N−1

i=0 αT−1(i)

The backward algorithm helps to find a most likely optimal state sequence. This

algorithm can be stated as follows [38].

1. For t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1 define

2. βt(i) = P (Ot+1,Ot+2, . . . ,OT−1, xt = qi, λ)

Then βt(i) can be calculated in following steps [38]:

1. Let βT−1(i) = 1, for i = 0, 1, . . . , N − 1
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2. For t = T − 2, T − 3, . . . , 0 and i = 0, 1, . . . , N − 1, compute

βt(i) =
N−1∑
j=0

aijbj(Ot+1)βt+1(j)

For t = 0, 1, . . . , T − 2 and i = 0, 1, . . . , N − 1 define

γt(i) = P (xt = qi|O, λ)

The relevant probability up to time t is given by [38],

γt(i) =
αt(i)βt(i)

P (O|λ)

The most likely state at any time t is the state for which γt(i) is maximum. The

Baum-Welch algorithm helps in iteratively re-estimating the parameters A, B, π [38].

It provides efficient way to best fit the observations. The number of states N and

number of unique observation symbols M are constant. However, other parameters

like A, B and π are changeable with row stochastic condition. This process of re-

estimating the model is explained as follows [38]:

1. Initialize λ = (A,B, π) with an appropriate guess or random values. For exam-

ple π = 1/N,Aij = 1/N,Bij = 1/M .

2. Compute αt(i), βt(i), γt(i) and γt(i, j) where γt(i, j) is a di-gamma. The di-

gammas can be defined as:

γt(i) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

γt(i) and γt(i, j) are related by:

γt(i) =
N−1∑
j=0

γt(i, j)
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3. Re-estimate model parameters as: For i = 0, 1, . . . , N − 1 let

πi = γ0(i)

For i = 0, 1, . . . , N − 1 and j = 0, 1, . . . , N − 1, compute

aij =

T−2∑
t=0

γt(i, j)

T−2∑
t=0

γt(i)

For j = 0, 1, . . . , N − 1 and k = 0, 1, . . . ,M − 1, compute

bj(k) =

∑
tε0,1,...,T−1,Ot=k

γt(j)

T−2∑
t=0

γt(j)

4. If P (O|λ) increases go to step 3.

2.2.3.2 HMM For Malware Detection

When an HMM is trained, it can be used to distinguish between a malware and

a benign file [38, 47]. There is a lot of previous work done on the use of HMM for

malware detection. The dataset is tested against the trained models. There is a range

of values of scores for which the scores of the malware and the benign files do not

overlap [36]. This is known as threshold. Using this threshold, the malware can be

distinguished from the benign files [47].
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CHAPTER 3

Related Work

A lot of previous work is done on detection and classification of malware. This

chapter discusses some attempts made for malware classification, which include usage

of structured control workflow and some other data mining methods.

3.1 Classification of Malware using Structured Control Flow

Control flow represents the execution path a program may take. Control flow

information appears in two main forms. The call graph represents the inter-procedural

control flow. The intra-procedural control flow is represented as a set of control flow

graphs with one graph per procedure [9]. In [9], the research has shown that malware

can be effectively be characterized by its control flow. The authors have proposed a

malware classification system using approximate matching of control flow graphs. The

string edit distances can be calculated between the control flow signatures and the

structured graphs of the malware in the database. The threshold is decided. If the edit

distance exceeds a particular threshold, then the binary can be classified as a malicious

binary, else it is a benign binary. Control flow is more invariant among polymorphic

and metamorphic malware. The research shows that the proposed method could

successfully identify variants of malware [9].

3.2 Behavioral Malware Classification

Classification systems generally fall into one of two categories: Those that rely

on features extracted from static files, or those that execute malware and use behav-

ioral features to classify malware. Static approaches sometimes use low-level features
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such as calls to external libraries, strings, and byte sequences for classification [23].

Other static approaches extract more detailed information from binaries, including

sequences of API calls, the graphical representations of control flow [9]. Although the

many variants in a malware family have different static signatures, they share char-

acteristic behavioral patterns resulting from their common function and heritage [8].

The authors in [8] have described a automatic classification system that can be trained

to accurately identify new variants within known malware families, using observed

similarities in behavioral features extracted from sensors monitoring live computer

hosts. In the feature selection used in [8], the authors have selected a set of observ-

able features that are easily extracted from live computer hosts, and whose values can

be used to infer whether a detected malware sample belongs to particular category or

family. The authors have considered the following features: the data collected from

performance monitors that report resource usage, the frequency of calls to specific

kernel functions, and the frequency of calls to specific sequences of kernel functions.

The system proposed by authors uses decision trees for classification, which label each

newly detected malware sample as one of the existing labels learned during training.

If a new malware sample does not belong to one of the existing labels, the decision

trees simply label it (incorrectly) with one of the existing labels. To address the issue

of new malware samples that are not well-described by an existing label, the authors

have used other types of classifiers. They have explored the use of the nearest centroid

algorithm [49], which can be used to establish a notion of distance from the centroids

that define the labels. If the malware whose distance to the closest centroid exceeded

a threshold, it might be considered new malware that required further analysis. The

authors used k-means clustering algorithm [7] to deal with the behavioral diversity

of malware having a particular label to establish multiple centroids for characterizing

each malware label and also exploring the use of subfamily labels for classification.
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The presented results indicate that the behavioral classifier can correctly identify new

malware variants within certain families of malware.

3.3 Malware Classification using the data mining methods

In [23], the authors have extracted the byte sequences from the executables,

converting these into n-grams, and constructed several classifiers: instance-based

learner, Näıve Bayes, decision trees, support vector machines and boosting. They

viewed each n-grams as a Boolean attribute that is either present in (i.e., T) or

absent from (i.e., F) the executable. They have shown that the boosted decision trees

outperformed the other methods. The following section shows the methods used in

their research.

3.3.1 Instance-based Learner

One of the simplest learning methods is the instance-based (IB) learner [1]. Its

concept description is a collection of training examples or instances. Learning, there-

fore, is the addition of new examples to the collection. An example is found in the

collection that is most similar to the unknown and the examples class label is returned

as its prediction for the unknown. The authors have used the number of values the

two instances have in common as the measure of similarity. In the variation of this

method, such as IBk, the k most similar instances are found and the majority vote

of their class labels is returned as the prediction. Values for k are typically odd to

prevent ties [23]. These are also called as nearest neighbor and k-nearest neighbors.
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3.3.2 Support Vector Machines (SVM)

Support Vector Machines [12] are supervised learning models with associated

learning algorithms that analyze data and recognize patterns, used for classification.

In [23], the authors produce a linear classifier, so its concept description is a vector

of weights, ~w and a threshold, b. SVMs use a kernel function to map training data

into a higher-dimensioned space so that the problem is linearly separable. In a high-

dimensional space, a hyperplane is built and used for classification. The method

predicts the positive class if ~w.~x−b >0 and predicts the negative class otherwise [23]. ~x

is the set of points on the hyperplane. Thus, given a set of training examples belonging

to one of the two categories, an SVM assigns new examples into one category or the

other.

3.3.3 Näıve Bayes

Näıve Bayes is a probabilistic method that has a long history in information

retrieval and text classification [29]. It stores as its concept description the prior

probability of each class, P (Ci), and the conditional probability of each attribute

value given the class, P (vj|Ci). These quantities are estimated by counting in training

data the frequency of occurrence of the classes and the attribute values for each class.

The Bayes rule is used to compute the posterior probability of each class given an

unknown instance, returning as its prediction the class with highest such value [23].

3.3.4 Decision Trees

The decision trees are built based on the training data. The internal nodes of a

decision tree correspond to attributes and leaf nodes correspond to class labels. The

performance element uses the attributes and their values of an instance to traverse the

18



tree from the root to a leaf. It predicts the class label of the leaf node [23]. It creates

a node, branches, and children for the attribute and its values, removes the attribute

from further consideration, and distributes the examples to the appropriate child

node. This process repeats recursively until a node contains examples of the same

class, at which point, it stores the class label [23]. In an effort to reduce over training,

most implementations also prune induced decision trees by removing subtrees that

are likely to perform poorly on test data [23]. The malware classification based on

the decision trees is very fast and also accurate. The disadvantage of the decision

trees is that an error in higher level of the tree may cause an error in the lower part

of the tree [48].

3.3.5 Boosted Classifiers

Boosting [15] is a method for combining multiple classifiers. A set of weighted

models are produced by iteratively learning a model from a weighted dataset. The

generated model is then evaluated. The dataset is reweighted based upon the model’s

performance [23]. The authors have provided a method of detecting unknown mali-

cious code in executables using machine learning. They have extracted byte sequences

from the executables, converted these into n-grams, and constructed several classi-

fiers: näıve Bayes, boosted SVMs and boosted decision trees. The results of their

experiments have shown that the boosted decision trees outperformed other methods

and achieved a true-positive rate of 0.98 and a false-positive rate of 0.05.

3.4 VILO: A Rapid Learning Nearest-Neighbor Classifier for Malware
Classification

There are two different types of malware classification possible: binary and famil-

ial: In the binary malware classification problem, an unknown executable is classified
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as either being malicious or benign. Conversely, in the familial malware classification

problem, a malicious executable is classified as belonging to a particular group of mal-

ware [25]. In [25], the work is based upon the familial malware classification. VILO

makes use of three components: N-perm feature vectors, Term Frequency X Inverse

Document Frequency (TFIDF) weighting of features [20], and the nearest-neighbor

algorithm. N-perms are obtained by sliding a window of size n over bytes, opcodes of

n-grams. They are robust against some code obfuscations such as instruction reorder-

ing [11]. VILO implements a nearest neighbor algorithm with similarities computed

over TFIDF weighted opcode mnemonic permutation features (N-perms). The results

in [25] showed that VILO is a quick and efficacious learner of real-world malware.

TFIDF weighting of features ensures that features that are common across many

types of executables are not overly emphasized [25]. This is suitable for constantly

changing malware population. Nearest neighbor search does not require construction

of a classification model and hence is very simple and effective [25]. The authors have

also stated that VILO is not suitable for binary malware classification.
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CHAPTER 4

Clustering Algorithms

Clustering is the process of classifying objects into subsets based on similarity

in the context of a particular problem. The objects are thereby organized into a

representation that characterizes the collection being sampled. The following section

discusses the different methods of clustering [19].

• Exclusive versus non-exclusive: An exclusive classification is a partition of

the set of objects. Each object belongs to exactly one subset, or cluster. Non-

exclusive classification, also called overlapping classification, is the alternative

in which an object can be assigned to several clusters [19].

• Intrinsic versus extrinsic: Depending on whether category labels are present

on the objects being classified, there are two types (intrinsic and extrinsic clas-

sification). Intrinsic classification only uses a proximity matrix to perform the

classification. Intrinsic classification is called “unsupervised learning” because

no labels are used for classifying the object [19]. Extrinsic classification uti-

lizes category labels on the object [19]. Extrinsic classification is also called

“supervised learning.”

• Hierarchical versus Partitional: Hierarchical clustering algorithms break

up the data into a hierarchy of clusters, whereas partitional algorithms divide

the data set into mutually disjoint partitions [18]. Hierarchical clustering algo-

rithms produce a hierarchy of clusters called as a dendrogram either by merging

smaller clusters into larger ones or dividing larger clusters to smaller ones [18].

Hierarchical clustering algorithms are further divided into following two types:
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– Agglomerative: Initially, each point is considered as a cluster in itself. The

two “nearest” clusters clusters are combined into one cluster repeatedly

until all the clusters are merged into a single cluster . This is a “bottom

up” approach.

– Divisive: All observations start in one cluster, and splits are performed re-

cursively as one moves down the hierarchy. This is a “top down” approach.

Partitional clustering algorithms generate various partitions and then evaluate

them by some criterion [18]. They are also called non-hierarchical as each

data point is placed in exactly one of k mutually exclusive clusters. One of

the most popular partitional clustering algorithms is the k-means clustering

algorithm. The number of clusters k is pre-determined. The algorithm initializes

the centroids for k partitions, and then assigns each member to a cluster based

on its distance from each of the centroids. It then recalculates the centroids

based on newly the formed clusters. The process is repeated until the difference

between the initial and the recalculated centroids is negligible.

There are key differences between hierarchical and partitional clustering [18]:

1. Partitional clustering is faster than hierarchical clustering.

2. Hierarchical clustering requires only a similarity measure, whereas the par-

titional clustering requires the initial centroids/centers and the number of

clusters as well.

4.1 k-means Clustering Algorithm

In this project, the k-means clustering algorithm is used for malware classifica-

tion. This algorithm is one of the simplest unsupervised learning algorithms that
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solves the clustering problem [27]. It classifies the dataset into a certain number of

clusters (say, k), which is pre-determined. k centroids are defined at initialization,

one for each cluster. These centroids may be placed as far as possible from each other.

Once this initialization is complete, each data point in the dataset is associated with

the centroid “nearest” to it and placed in the corresponding cluster. In the next step,

the centroids for each cluster are recalculated depending on the data points that have

been assigned to it. These two steps are repeated until the centroids no longer change,

or until the distance between the initial centroids and the recalculated centroids is

negligible. The Euclidean distance formula is used for the distances calculation. The

algorithm used for this project can be described in 7 steps as shown below. Steps 1

and 2 comprise of the pre-work. Step 3 is the initialization step. Steps 4, 5 and 6 are

the looping steps. Step 6 is the analysis step.

1. Collect the malware dataset.

2. Identify the number of clusters (k).

3. Initialize the k centroids (k-means) for the data, say, c1, c2, . . . , ck. This can be

done in several ways, such as random or uniform distribution on each dimension

of the centroid or by simply selecting one of the data points as a centroid.

4. Determine the distance of each malware from each centroid using Euclidean

distance, and assign each malware to the cluster with the centroid closest to it.

5. Recalculate the centroids for each cluster.

6. Repeat the steps 4 and 5 until there is no (or negligible) change in cluster

centroids.
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7. If the formed clusters do not look reasonable, repeat steps 1-6 for different

number of clusters (different k).

4.1.1 Advantages of the k-means clustering algorithm

The k-means clustering algorithm is simple to implement. Since the distance of

a point from a centroid does not depend on the distance of any other point from any

centroid, these calculations can be done in parallel, thus increasing the overall speed

of execution. Following are the other advantages of k-means clustering algorithm:

1. It is a simple and intuitive clustering algorithm.

2. This algorithm works well for globular clusters.

4.1.2 Disadvantages of the k-means clustering algorithm

Although k-means clustering algorithm is simple and fast and produces tighter

clusters than hierarchical clustering, it has some limitations. Following are the limi-

tations of k-means clustering algorithm:

1. The number of clusters k is required to be specified at the beginning. If this k

is incorrectly guessed, the clusters may not reflect the natural classification of

the data at hand.

2. Different initial values of centroids may produce different clusters. It may there-

fore be necessary to try clustering with different random initializations for clus-

ter centroids.

3. k means does not work well with non-globular clusters (e.g. chains).

24



CHAPTER 5

Implementation

This chapter comprises of all the implementation details of the project. The first

section gives information on training HMMs. The second section contains a brief

overview of how the data was collected. The third section gives details about scoring

the dataset. The fifth section is about the implementation of k-means clustering

algorithm in this project.

5.1 Training HMMs

The hidden Markov models were created for four different compilers (GCC,

MinGW, TurboC, Clang), hand-written assembly (TASM), virus construction kit

(NGVCK) and for metamorphic code (MWOR). For each of these models, the whole

dataset was divided into 5 subsets. As mentioned in [36], 4 datasets are used for

training and the fifth subset is used to test the trained HMM model. This process

is repeated varying the number of states from 2 to 6. The training is done for 800

iterations and models are built. This method is known as five-fold cross-validation.

The number of assembly files used in each case is as shown in Table 1.

5.2 Collection of the dataset

Malware datasets are not easily available and this project requires a very sub-

stantial number of malware samples. The dataset was requested from the Malicia

project website [31]. It comprises of 11000+ malware binaries collected from 500

drive-by download servers over a period of 11-months [31]. We have used 9442 mal-

ware samples from this dataset for malware classification. The malware samples are

25



Table 1: Count of samples used for the training of HMM

Type Count

GCC 75
Clang 72
TurboC 64
MinGW 72
MWOR 100
NGVCK 50
TASM 56

of EXE or DLL format. These are disassembled using the objdump command. Af-

ter disassembling, these files are used for scoring against the HMMs implemented

in 5.1. In addition to the malware binaries, the data that we received also contained

a MySQL database with metadata that included information on when the malware

was collected, where the malware was collected from and the classification of the

malware. This database helped us realize that the clusters (after classification of

the dataset into clusters using k-means clustering algorithm) actually correspond to

certain characteristics of the malware.

5.3 Scoring the dataset

After training, a model should assign high probabilities to files similar to the

training dataset and low probabilities to all other files. We computed the log likelihood

of the malware samples. Log likelihood is strongly length dependent, since it is a sum

of log transition probabilities and log observation probabilities. A longer sequence

will naturally have more transitions and more observations and thus a greater log

likelihood, independent of how similar it is to the training sequences. Because the

sequences in the dataset may have different lengths, we divided the log likelihood of

a sequence by the sequence length (which is the number of opcodes) to obtain the log
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likelihood per opcode (LLPO), which adjusts for the length difference. This LLPO

is the score of the sequence [47]. Since we used five-fold cross validation during the

training phase, we have 25 models each for the 4 compilers (GCC, MINGW, CLANG

and TURBOC), the hand-written assembly code (TASM), the metamorphic worm

(MWOR) and the virus construction kit (NGVCK). Each malware sample is scored

against each of the 25 models in every case and then the average score of all the 25

models is taken as the final score for that particular case.

5.4 k-means Clustering Algorithm

Each malware sample is represented as a 7-tuple, where each dimension represents

its score generated by the specific HMM. Suppose the dataset contains n malware

samples, say malware1, malware2,. . .,malwaren. The corresponding 7-tuples for these

malware samples can be shown as in Table 2.

Table 2: Malware Samples in the dataset

Name GCC MinGW TurboC Clang TASM MWOR NGVCK

malware1 a1 b1 c1 d1 e1 f1 g1
malware2 a2 b2 c2 d2 e2 f2 g2
...

...
...

...
...

...
...

...
malwaren an bn cn dn en fn gn

In Table 2, a1, a2, . . ., an correspond to the GCC scores, b1, b2, . . ., bn correspond

to the MinGW scores, c1, c2, . . ., cn correspond to the TurboC scores, d1, d2, . . ., dn

are the Clang scores of n malware samples, e1, e2, . . ., en are the TASM scores, f1, f2,

. . ., fn are the MWOR scores and g1, g2, . . ., gn correspond to the NGVCK scores.

The range of each dimension of the dataset is divided into k parts. Since all

the malware samples in a cluster are 7-tuples (7-dimensional), the centroid for each
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cluster is also a 7-tuple. For every cluster, the mean is computed for each dimension.

Table 3 represents the centroid, i.e., the 7-tuple with the mean values thus computed.

The mean of scores in the first dimension of the first cluster is given by:

amean =
(a1 + a2 + ....+ an/k)

n/k

Similarly, means for all the other dimensions are calculated. The resulting 7-tuple is

considered the centroid for that corresponding cluster. The centroids for all k clusters

are computed in this manner. These represent the initial centroids of the dataset.

In the next step, the distance of each malware sample with each of the k centroids

is calculated. Each malware sample is placed in the cluster for which its distance with

the centroid of that cluster is minimum. After all the malware has been assigned

to a cluster, the new mean values (7-tuple) for all k centroids are recalculated by

computing the average of each dimension of all malware points in that cluster. This

process continues till no point moves between clusters between 2 iterations, or the

distance between the old centroids and the new centroids is negligible. One sample

record in the dataset is shown in Table 4.

Table 3: 7-tuple of a centroid

Name GCC MinGW TurboC Clang TASM MWOR NGVCK

centroid amean bmean cmean dmean emean fmean gmean

Table 4: Sample record in the dataset

Name GCC MinGW TurboC Clang TASM MWOR NGVCK Cluster

Num -462.91 -384.06 -235.18 -444.97 -197.49 -708.39 -334.51 0

The Euclidean distance between points p and q is the length of the line

segment connecting them. In Cartesian coordinates, if p = (p1, p2, . . . , pn) and
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q = (q1, q2, . . . , qn) are two points in Euclidean n-space, then the distance from p

to q, or q to p is given by:

d(p, q) =
√
x1(p1 − q1)2 + x2(p2 − q2)2 + · · ·+ xn(pn − qn)2

where x1, x2, ..., xn are all weight multipliers initialized to 1. These weight multipliers

are included since we may want to weigh some of the individual scores more than

others. They are all left at their default values for now.

The k-means clustering procedure is performed for k = 2 to k = 15. The stacked

column charts are plotted for k = 2 to k = 10, and can be found in appendix A.

5.4.1 Example - Distance Calculation

In this section, we present an example of distance calculation between a malware

sample and a centroid. In Table 5, we provide the data used for the example distance

calculation presented in this section.

Table 5: Example of a malware sample

Name GCC MinGW TurboC Clang TASM MWOR NGVCK

File 1 -430.145 -319.785 -205.8573 -423.8581 -150.8818 -708.3964 -285.6242

Suppose we set the number of clusters, k = 2. Every malware sample is rep-

resented by a 7-tuple as shown in Table 2. The malware sample named “File 1” is

represented by a tuple consisting of its scores from the 7 models – GCC, MinGW,

TurboC, Clang, TASM, MWOR and NGVCK. Now, as per the algorithm for k-means

clustering, we have to initialize k clusters by assigning a value to each dimension of

the 7-tuple using one of several possible methods (random values for each dimension,

all dimensions of a random malware sample, uniformly distributed centroids within
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the range of each dimension, etc). We have two centroids in our example. Suppose

the initial centroids computed by uniformly distributed centroids within the range of

each dimension of the dataset are given in Table 6.

Table 6: Initial centroids

-468.7534 -382.7203 -372.674 -434.2221 -297.1747 -708.3964 -405.1523

-286.6685 -196.3716 -191.1312 -222.1586 -151.7624 -708.3964 -206.146

Once the centroids are initialized, we enter a loop where each malware is assigned

to the cluster corresponding to the centroid closest to it, and then the centroids are

recomputed by taking the mean of each dimension of the malware assigned to it. The

distance between the malware sample in Table 5 and the first centroid in Table 6 is

calculated using the Euclidean distance formula. It evaluates to the following:

d(centroid1,malware sample)

=
√
x1((−430.145)− (−468.7534))2 + · · ·+ x7((−285.6242)− (−405.1523))2

where x1, x2, x3, x4, x5, x6, x7 are all 1. Similarly, the distance between the malware

sample in Table 5 and the second centroid in Table 6 is calculated using the Euclidean

distance formula below:

d(centroid2,malware sample)

=
√
x1((−430.145)− (−286.6685))2 + · · ·+ x7((−285.6242)− (−206.146))2

where x1, x2, x3, x4, x5, x6, x7 are 1.

The distances d(centroid1,malwaresample) and d(centroid2,malwaresample)

are compared. If the distance of the malware sample from the first centroid is less

than its distance from the second centroid, it is placed in the first cluster (other-

wise it is placed in the second cluster, i.e., the cluster with the closest centroid to

30



that malware sample). The distance between all malware samples and centroids is

calculated and the malware samples are placed in the corresponding clusters in this

manner. Following this, the centroids for each cluster are recalculated by computing

the average of each dimension of the malware samples in that cluster. This process

continues till no malware moves between centroids or until the distance between the

old centroids and the new centroids is negligible.
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CHAPTER 6

Experiments

This chapter comprises of the setup and the results of the experiments of the

project. The setup section states the specifications of the host and the guest machines.

The second section contains the discussion on the results of the project.

6.1 Setup

In this project, we have used a virtual machine container and we have taken the

snapshots of the whole system for recovery purposes. We have used the Oracle VM

VirtualBox to get score the malware samples. The following are the specifications of

the host and the guest machine:

Host:

• Model: Sony Vaio T15

• Processor: Intel Corei5-3337U, CPU@1.80GHz

• RAM: 4.00GB

• System type: 64-bit OS

• Operating System: Windows 8

Guest:

• Software: Oracle VirtualBox 4.2.18 VMs

• Base memory: 1000MB
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• System type: 64bit OS

• Operating System: Linux Ubuntu 12.04.3 LTS

The training of HMMs is done using the host machine. The malware samples are

scored on the guest machine. The k-means clustering is performed on the host ma-

chine.

6.2 Discussion on Results

As mentioned in Chapter 5, in addition to the malware binaries, the data that

we received also contained the MySQL database with all metadata including when

the malware was collected, from where the malware was collected and the malware

classification. We have taken into consideration the family type of the malware for

our project. The stacked column charts are plotted for number of files of each family

type versus clusters. Some of the malware samples in the dataset had its family type

as a null value. We have filtered out these samples in order to get a better clustering.

6.2.1 Classification and Clustering

It can be seen that there are three dominant family types in the dataset: Win-

websec, Zbot and Zeroaccess. These family types are distinctly seen in three different

clusters in the stacked column chart. The family type Winwebsec dominates in Clus-

ter 6. The family type Zbot dominates in Cluster 4. The family type Zeroaccess

dominates in Cluster 3. Of all the stacked column charts drawn, though the family

types are distinctly seen in the clusters for k = 9. Thus, as per the results, the

dataset can be divided into three major clusters, as shown in Figure A.16. From the

results in Figure A.16, we obtain the graphs in Figure 8. Clearly, the Winwebsec
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Figure 7: Stacked Column Chart for 9 Clusters

Figure 8: Stacked Column Chart for 9 Clusters

family type has malware samples from Cluster 6, the Zbot family type has malware

samples from Cluster 4 and the Zeroaccess family type has the malware samples from

Cluster 3. The functionality and details of these three clusters corresponding to the

malware family types in the decreasing order of their dominance in the dataset can
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be explained as follows:

• Cluster 6: Most of the malware samples that fall in the cluster are of type

Winwebsec. As described in [46], “Winwebsec is a category of malware that

attacks the users of Windows operating system and produce fake claims as gen-

uine anti-malware softwares. They show pop-ups that claim to scan for malware

and displays fake warnings similar to 32 Virus and Trojans Detected on your

computer. Click on Fix Now button to clean these threats. They then show

a message to the user that they need to pay money to activate the software

in order to remove these threats which actually doesn’t exist. These malware

may display a dialog that looks similar to Windows Security Center or it may

have names like Live Security Platinum or Security Shield. The GUI varies

from variant to variant.” Winwebsec programs generate misleading alerts and

false detections in order to convince users to purchase illegitimate security soft-

ware [46]. They may also display logos or product names of some well known

companies like Microsoft.

• Cluster 4: The second most dominant type in the dataset is Zbot. As described

in [28], “Zbot is family of Trojans can steal your personal information and

give a hacker access and control of your PC. They can also lower your internet

browser security and turn off your firewall. They can be installed on your PC via

spam emails and hacked websites, or packaged with other malware families.” It

specifically targets system information, online credentials, and banking details,

but can be customized through the toolkit to gather any sort of information.

This is done by tailoring configuration files that are compiled into the Trojan

installer by the attacker [39].
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• Cluster 3: The third type which has its dominance in the dataset is Zeroaccess.

As per [42], Trojan.Zeroaccess is a Trojan horse that uses an advanced rootkit to

hide itself. It can also create a hidden file system, downloads more malware, and

opens a back door on the compromised computer. The threat is also capable of

downloading other threats on to the compromised computer, some of which may

be misleading applications that display bogus information about threats found

on the computer and scare the user into purchasing fake antivirus software to

remove the bogus threats. It is also capable of downloading updates of itself to

improve and/or fix functionality of the threat [42].

The other family types in the dataset are WinRescue, ufasoft-bitcoin, spyeye-

ep, smarthdd, securityshield, russkill, ransom Noaouy, ramnit, harebot, fakeav-

webprotection, fakeav-rena. The number of malware samples of these family types

is very insignificant. In Table 7, we have tabulated the malware distribution in the

dataset for quick reference.

The problem in k-means clustering is that the number of clusters k must be

predetermined. We have performed the experiments for k = 2 to k = 15 and identified

the best case. The clustering might be more accurate when k is more than 15.

6.2.2 Why is clustering important?

There are many benefits of clustering malware. Firstly, the clustering of malware

can allow faster response to new threats – If the new malware can fit in one of the

existing clusters, the anti-malware detection and removal are already known. Hence,

the new malware can be removed with the known techniques. If it does not fit in

one of the clusters, the known techniques of malware detection and removal will not

work. Hence, the new techniques need to be found out [2]. Secondly, the clustering of
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Table 7: Malware Distribution in the dataset

FamilyType NumberOfMalwareSamples

cleaman 32
cridex 74
cutwail 2
dprn 1

fakeav-rena 2
fakeav-webprotection 3

harebot 53
ramnit 4

ransomNoaouy 5
russkill 1

securityshield 58
smarthdd 68
spyeye-ep 5

ufasoft-bitcoin 3
winrescue 5
winwebsec 4361

zbot 2136
zeroaccess 1306

malware helps in better understanding of malware activities – The clustering might

help us in knowing the functionality of the malware and their relationship with other

malware.
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CHAPTER 7

Conclusion and Future Work

In this project, we proposed and evaluated the k-means clustering algorithm

for classifying over 9000 malware samples. We scored the malware samples using

the hidden Markov models for variety of compilers and malware generators (GCC,

MINGW, CLANG, TURBOC, TASM and MWOR). We used these scores as the

input to the k-means clustering algorithm. Experiments were performed varying the

number of clusters from k = 2 to k = 15. We drew the stacked column charts

for all the cases. It was observed that the charts for the case k = 9 proved to be

the best case. The distinction in the family types of the malware in this case was

clearly seen in the clusters. Each cluster corresponds to a specific malware family.

The functionality of the three dominating clusters: Winwebsec, Zbot, Zeroaccess was

described in Chapter 6. The results showed that HMMs are an effective tool for the

challenging task of automatically classifying malware.

In this project, the distances in k-means clustering algorithm are calculated

using the Euclidean distance formula. Some other ways of finding the distance –

the Hamming distance (also called city block and Manhattan distance), Minkowski

distance or cosine distance can be explored in the future work.

The centroid selection of the dataset can be done in a number of ways. In this

project, we have computed the cluster centroid by computing the mean for that clus-

ter. The k initial means are computed within the data domain. The following varia-

tion methods can be tried as a part of the future work: The centroids can be randomly

generated within the data domain. k-medians clustering can be explored, wherein the
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median in each dimension is calculated instead of the mean [10]. k-medoids cluster-

ing can be tried out which calculates the medoid instead of the mean [21]. Fuzzy

C-means Clustering, which is a soft version of k-means, where each data point has a

fuzzy degree belonging to each cluster [6].

In this project, some of the malware samples are very different than the other

malware samples. If we filter out these samples from the dataset, the clustering will

be more accurately done. For this, we can calculate the standard deviation of the

malware dataset and consider only those samples which fall within certain range (say,

95%) of the standard deviation. The clusters generated in this way must be more

meaningful, since the outliers will not be considered.

In this project, we have considered the hidden Markov models for a variety of

compilers and malware generators. For the future work, we can consider using only

the HMMs for a variety of known malware. Going further, we can train the hidden

Markov models for the dominant family types of the malware that exist in the dataset

and see how the clusters are formed.
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APPENDIX

Graphs for k-means Clustering Algorithm for Malware Classification

A.1 k = 2 (Number of Clusters=2)

Figure A.9: Stacked Column Chart for 2 Clusters (Uniformly Spaced Initial Cen-
troids)
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A.2 k = 3 (Number of Clusters=3)

Figure A.10: Stacked Column Chart for 3 Clusters (Uniformly Spaced Initial Cen-
troids)

A.3 k = 4 (Number of Clusters=4)

Figure A.11: Stacked Column Chart for 4 Clusters (Uniformly Spaced Initial Cen-
troids)
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A.4 k = 5 (Number of Clusters=5)

Figure A.12: Stacked Column Chart for 5 Clusters (Uniformly Spaced Initial Cen-
troids)

A.5 k = 6 (Number of Clusters=6)

Figure A.13: Stacked Column Chart for 6 Clusters (Uniformly Spaced Initial Cen-
troids)
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A.6 k = 7 (Number of Clusters=7)

Figure A.14: Stacked Column Chart for 7 Clusters (Uniformly Spaced Initial Cen-
troids)

A.7 k = 8 (Number of Clusters=8)

Figure A.15: Stacked Column Chart for 8 Clusters (Uniformly Spaced Initial Cen-
troids)
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A.8 k = 9 (Number of Clusters=9)

Figure A.16: Stacked Column Chart for 9 Clusters (Uniformly Spaced Initial Cen-
troids)

A.9 k = 10 (Number of Clusters=10)

Figure A.17: Stacked Column Chart for 10 Clusters (Uniformly Spaced Initial Cen-
troids)
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Some more experiments were performed by randomly selecting the initial cen-

troids varying k = 2 to k = 15. It was found that k = 12 and k = 10 are the best

cases. Following are the graphs for these cases:

A.10 k = 2 (Number of Clusters=2)

Figure A.18: Stacked Column Chart for 2 Clusters (Random Initial Centroids)
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A.11 k = 3 (Number of Clusters=3)

Figure A.19: Stacked Column Chart for 3 Clusters (Random Initial Centroids)

A.12 k = 4 (Number of Clusters=4)

Figure A.20: Stacked Column Chart for 4 Clusters (Random Initial Centroids)
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A.13 k = 5 (Number of Clusters=5)

Figure A.21: Stacked Column Chart for 5 Clusters (Random Initial Centroids)

A.14 k = 6 (Number of Clusters=6)

Figure A.22: Stacked Column Chart for 6 Clusters (Random Initial Centroids)
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A.15 k = 7 (Number of Clusters=7)

Figure A.23: Stacked Column Chart for 3 Clusters (Random Initial Centroids)

A.16 k = 8 (Number of Clusters=8)

Figure A.24: Stacked Column Chart for 8 Clusters (Random Initial Centroids)
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A.17 k = 9 (Number of Clusters=9)

Figure A.25: Stacked Column Chart for 9 Clusters (Random Initial Centroids)

A.18 k = 10 (Number of Clusters=10)

Figure A.26: Stacked Column Chart for 10 Clusters (Random Initial Centroids)

53



A.19 k = 11 (Number of Clusters=11)

Figure A.27: Stacked Column Chart for 11 Clusters (Random Initial Centroids)

A.20 k = 12 (Number of Clusters=12)

Figure A.28: Stacked Column Chart for 12 Clusters (Random Initial Centroids)
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A.21 k = 13 (Number of Clusters=13)

Figure A.29: Stacked Column Chart for 13 Clusters (Random Initial Centroids)

A.22 k = 14 (Number of Clusters=14)

Figure A.30: Stacked Column Chart for 14 Clusters (Random Initial Centroids)
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A.23 k = 15 (Number of Clusters=15)

Figure A.31: Stacked Column Chart for 15 Clusters (Random Initial Centroids)
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