183 research outputs found

    Probing the missing baryons with the Sunyaev-Zel'dovich effect from filaments

    Get PDF
    Observations of galaxies and galaxy clusters in the local universe can account for only 10%\sim\,10\% of the total baryon content. Cosmological simulations predict that the `missing baryons' are spread throughout filamentary structures in the cosmic web, forming a low-density gas with temperatures of 105107 ⁣10^5-10^7\,\!K. We search for this warm-hot intergalactic medium (WHIM) by stacking the Planck Compton yy-parameter map of the thermal Sunyaev-Zel'dovich (tSZ) effect for 1,002,334 pairs of CMASS galaxies from the Sloan Digital Sky Survey. We model the contribution from the galaxy halo pairs assuming spherical symmetry, finding a residual tSZ signal at the 2.9\mbox{\sigma} level from a stacked filament of length 10.5h1Mpc10.5\,h^{-1}\,\rm Mpc with a Compton parameter magnitude y=(0.6±0.2)×108y=(0.6\pm0.2)\times10^{-8}. We consider possible sources of contamination and conclude that bound gas in haloes may contribute only up to 20%20\% of the measured filamentary signal. To estimate the filament gas properties we measure the gravitational lensing signal for the same sample of galaxy pairs; in combination with the tSZ signal, this yields an inferred gas density of ρb=(5.5±2.9)×ρbˉ\rho_{\rm b}=(5.5\pm 2.9)\times\bar{\rho_{\rm b}} with a temperature T=(2.7±1.7)×106T=(2.7\pm 1.7) \times 10^6\,K. This result is consistent with the predicted WHIM properties, and overall the filamentary gas can account for 11±7% 11\pm 7\% of the total baryon content of the Universe. We also see evidence that the gas filament extends beyond the galaxy pair. Averaging over this longer baseline boosts the significance of the tSZ signal and increases the associated baryon content to 28±12%28\pm 12\% of the global value.Comment: 13 pages, 8 figures; accepted for publication in A&

    Galaxy And Mass Assembly (GAMA): Stellar-to-Dynamical Mass Relation I. Constraining the Precision of Stellar Mass Estimates

    Full text link
    In this empirical work, we aim to quantify the systematic uncertainties in stellar mass (M)(M_\star) estimates made from spectral energy distribution (SED) fitting through stellar population synthesis (SPS), for galaxies in the local Universe, by using the dynamical mass (Mdyn)(M_\text{dyn}) estimator as an SED-independent check on stellar mass. We first construct a statistical model of the high dimensional space of galaxy properties; size (Re)(R_e), velocity dispersion (σe)(\sigma_e), surface brightness (Ie)(I_e), mass-to-light ratio (M/L)(M_\star/L), rest-frame colour, S\'ersic index (n)(n) and dynamical mass (Mdyn)(M_\text{dyn}); accounting for selection effects and covariant errors. We disentangle the correlations among galaxy properties and find that the variation in M/MdynM_\star/M_\text{dyn} is driven by σe\sigma_e, S\'ersic index and colour. We use these parameters to calibrate an SED-independent MM_\star estimator, M^\hat{M}_\star. We find the random scatter of the relation MM^M_\star-\hat{M}_\star to be 0.108dex0.108\text{dex} and 0.147dex0.147\text{dex} for quiescent and star-forming galaxies respectively. Finally, we inspect the residuals as a function of SPS parameters (dust, age, metallicity, star formation rate) and spectral indices (Hα\alpha, Hδ\delta, Dn4000)D_n4000). For quiescent galaxies, 65%\sim65\% of the scatter can be explained by the uncertainty in SPS parameters, with dust and age being the largest sources of uncertainty. For star-forming galaxies, while age and metallicity are the leading factors, SPS parameters account for only 13%\sim13\% of the scatter. These results leave us with remaining unmodelled scatters of 0.055dex0.055\text{dex} and 0.122dex0.122\text{dex} for quiescent and star-forming galaxies respectively. This can be interpreted as a conservative limit on the precision in MM_\star that can be achieved via simple SPS-modelling.Comment: Accepted for publication in the Astrophysical Journal on 14 June 202

    A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants

    Get PDF
    Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p &lt; 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p &lt; 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p

    A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants

    Get PDF
    Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p &lt; 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p &lt; 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p

    Less is less: photometry alone cannot predict the observed spectral indices of z1z\sim1 galaxies from the LEGA-C spectroscopic survey

    Full text link
    We test whether we can predict optical spectra from deep-field photometry of distant galaxies. Our goal is to perform a comparison in data space, highlighting the differences between predicted and observed spectra. The Large Early Galaxy Astrophysics Census (LEGA-C) provides high-quality optical spectra of thousands of galaxies at redshift 0.6<z<10.6<z<1. Broad-band photometry of the same galaxies, drawn from the recent COSMOS2020 catalog, is used to predict the optical spectra with the spectral energy distribution (SED) fitting code Prospector and the MILES stellar library. The observed and predicted spectra are compared in terms of two age and metallicity-sensitive absorption features (HδA\delta_\mathrm{A} and Fe4383). The global bimodality of star-forming and quiescent galaxies in photometric space is recovered with the model spectra. But the presence of a systematic offset in the Fe4383 line strength and the weak correlation between the observed and modeled line strength imply that accurate age or metallicity determinations cannot be inferred from photometry alone. For now we caution that photometry-based estimates of stellar population properties are determined mostly by the modeling approach and not the physical properties of galaxies, even when using the highest-quality photometric datasets and state-of-the-art fitting techniques. When exploring a new physical parameter space (i.e. redshift or galaxy mass) high-quality spectroscopy is always needed to inform the analysis of photometry.Comment: 13 pages, 8 figures, accepted 26 October 202

    What endocrinologists can do to prevent cardiovascular complications in adults with Prader-Willi syndrome:Lessons from a case series

    Get PDF
    Context: Prader-Willi syndrome (PWS) is a complex rare genetic syndrome. Mortality in patients with PWS is 3% per year. In nearly half of the patients, the cause of death is of cardiopulmonary origin. Prevention, diagnosis and treatment of cardiovascular (CV) disease in PWS adults is complicated by the behavioral phenotype, reduced ability to express physical complaints, high pain threshold and obesity. Objective: To describe the challenges in prevention, diagnosis and treatment of CV disease in PWS adults, in order to increase awareness and improve medical care. Methods: Retrospective study of medical records of adults visiting the Dutch PWS reference center. Results: We describe the challenges encountered during diagnosis and treatment of four PWS adults with heart failure. All had pre-existent peripheral edema. CV risk factors in these patients were obesity (n=4), type 2 diabetes mellitus (n=2), hypertension (n=2), hypogonadism (n=3) and sleep apnea (n=2). Remarkably, all patients were younger than 40 years during their first cardiac decompensation. All patients presented with progressive shortness of breath and/or orthopnea and progressive pitting edema. In 117 controls with PWS without CV problems, 31% had leg edema. Conclusion: Diagnosing CV problems in PWS adults is challenging. Peripheral edema is common in PWS adults without CV morbidity, which makes edema in general a poor marker for heart failure. However, when edema is of the pitting kind and progressive, this is a strong predictor of cardiac decompensation. We provide practical recommendations for diagnosing and treating CV problems in this vulnerable patient population.</p

    Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis

    Get PDF
    Membrane and secretory trafficking are essential for proper neuronal development. However, the molecular mechanisms that organize secretory trafficking are poorly understood. Here, we identify Bicaudal-D-related protein 1 (BICDR-1) as an effector of the small GTPase Rab6 and key component of the molecular machinery that controls secretory vesicle transport in developing neurons. BICDR-1 interacts with kinesin motor Kif1C, the dynein/dynactin retrograde motor complex, regulates the pericentrosomal localization of Rab6-positive secretory vesicles and is required for neural development in zebrafish. BICDR-1 expression is high during early neuronal development and strongly declines during neurite outgrowth. In young neurons, BICDR-1 accumulates Rab6 secretory vesicles around the centrosome, restricts anterograde secretory transport and inhibits neuritogenesis. Later during development, BICDR-1 expression is strongly reduced, which permits anterograde secretory transport required for neurite outgrowth. These results indicate an important role for BICDR-1 as temporal regulator of secretory trafficking during the early phase of neuronal differentiation

    Stellar Half-Mass Radii of 0.5<z<2.30.5<z<2.3 Galaxies: Comparison with JWST/NIRCam Half-Light Radii

    Full text link
    We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of >>500 M>1010 MM_\star>10^{10}~M_\odot galaxies in the redshift range 0.5<z<2.30.5<z<2.3. We compare the resulting rest-frame 1.5-2μ\mum half-light radii (RNIRR_{\rm{NIR}}) with stellar half-mass radii (\rmass) derived with multi-color light profiles from CANDELS HST imaging. In general agreement with previous work, we find that RNIRR_{\rm{NIR}} and \rmass~are up to 40\%~smaller than the rest-frame optical half-light radius RoptR_{\rm{opt}}. The agreement between RNIRR_{\rm{NIR}} and \rmass~is excellent, with negligible systematic offset (<<0.03 dex) up to z=2z=2 for quiescent galaxies and up to z=1.5z=1.5 for star-forming galaxies. We also deproject the profiles to estimate \rmassd, the radius of a sphere containing 50\% of the stellar mass. We present the RMR-M_\star distribution of galaxies at 0.5<z<1.50.5<z<1.5, comparing RoptR_{\rm{opt}}, \rmass~and \rmassd. The slope is significantly flatter for \rmass~and \rmassd~ compared to RoptR_{\rm{opt}}, mostly due to downward shifts in size for massive star-forming galaxies, while \rmass~and \rmassd~do not show markedly different trends. Finally, we show rapid size evolution (R(1+z)1.7±0.1R\propto (1+z)^{-1.7\pm0.1}) for massive (M>1011 MM_\star>10^{11}~M_\odot) quiescent galaxies between z=0.5z=0.5 and z=2.3z=2.3, again comparing RoptR_{\rm{opt}}, \rmass~and \rmassd. We conclude that the main tenets of the size evolution narrative established over the past 20 years, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR.Comment: Submitted to ApJ. Comments welcom

    Malignancies in Prader-Willi Syndrome:Results From a Large International Cohort and Literature Review

    Get PDF
    CONTEXT: Prader-Willi syndrome (PWS) is a complex disorder combining hypothalamic dysfunction, neurodevelopmental delay, hypotonia, and hyperphagia with risk of obesity and its complications. PWS is caused by the loss of expression of the PWS critical region, a cluster of paternally expressed genes on chromosome 15q11.2-q13. As life expectancy of patients with PWS increases, age-related diseases like malignancies might pose a new threat to health. OBJECTIVE: To investigate the prevalence and risk factors of malignancies in patients with PWS and to provide clinical recommendations for cancer screening. METHODS: We included 706 patients with PWS (160 children, 546 adults). We retrospectively collected data from medical records on past or current malignancies, the type of malignancy, and risk factors for malignancy. Additionally, we searched the literature for information about the relationship between genes on chromosome 15q11.2-q13 and malignancies. RESULTS: Seven adults (age range, 18-55 years) had been diagnosed with a malignancy (acute lymphoblastic leukemia, intracranial hemangiopericytoma, melanoma, stomach adenocarcinoma, biliary cancer, parotid adenocarcinoma, and colon cancer). All patients with a malignancy had a paternal 15q11-13 deletion. The literature review showed that several genes on chromosome 15q11.2-q13 are related to malignancies. CONCLUSION: Malignancies are rare in patients with PWS. Therefore, screening for malignancies is only indicated when clinically relevant symptoms are present, such as unexplained weight loss, loss of appetite, symptoms suggestive of paraneoplastic syndrome, or localizing symptoms. Given the increased cancer risk associated with obesity, which is common in PWS, participation in national screening programs should be encouraged.</p
    corecore