10 research outputs found

    Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell

    Get PDF
    The aim of the paper was to determine the morphology of the layers and the microstructure of the transition zone present in the proposed tandem solar structure. The bottom-silicon solar cell plays a double role: first as a highly porous non-reflecting material, and second as a scaffold for top-perovskite cell. In the presented solution, the use of a porous layer made of (e.g., TiO2) is excluded in favor of chemically etched wires on the silicon surface. The porous layer of silicon consists of nano- and microwires etched with metal assisted etching (MAE). The perovskite layer is introduced by a two-step chemical method into the spaces between the wires to fully fill them and intentionally form an additional capping layer at the same time. To examine the structure made in this way, advanced microscopic methods were used including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM), also in high resolution

    SEM/TEM Investigation of Degradation of Bi-Layer (Cr,Al)N/Cr2N3 Duplex Coatings Exposed to AlSi Alloy High Pressure Die Casting Cycles

    No full text
    High pressure die casting (HDPC) allows to produce aluminum parts for car industry of complicated shapes in long series. Dies used in this process must be robust enough to withstand long term injection cycling with liquid aluminum alloys, as otherwise their defects are imprinted on the product making them unacceptable. It is expected that nitriding followed by coating deposition (duplex treatment) should protect them in best way and increase intervals between the cleaning/repairing operations. The present experiment covered investigations of the microstructure of the as nitride and deposited with CrAlN coating as well as its shape after foundry tests. The observations were performed with the scanning and transmission electron microscopy (SEM/TEM) method. They showed that the bottom part of this bi-layer is formed by roughly equi-axed Cr2N crystallites, while the upper one with the fine columnar (CrAl)N crystallites. This bi-layers were matched with a set of 7x nano-layers of CrN/(CrAl)N, while at the coating bottom a CrN buffer layer was placed. The foundry run for up to 19 500 cycles denuded most of coated area exposed to fast liquid flow (40 m/s) but left most of bottom part of the coating in the areas exposed to slower flow (7 m/s). The acquired data indicated that the main weakness of this coating was in its porosity present both at the columnar grain boundaries (upper layer) as well as at the bottom of droplets imbedded in it (both layers). They nucleate cracks propagating perpendicularly and the latter at an angle or even parallel to the substrate. The most crack resistant part of the coating turned-out the bottom layer built of roughly equiaxed fine Cr2N crystallites. Even application of this relatively simple duplex protection in the form of CrAlN coating deposited on the nitride substrate helped to extend the die run in the foundry by more than three times
    corecore