839 research outputs found

    Anna Rice Honors Portfolio

    Get PDF
    Anna Rice\u27s honors portfolio captured in December 2015

    Epigenetic Regulation of Cytokine Production in Human Amnion and Villous Placenta

    Get PDF
    The mechanisms of human preterm labour appear inextricably linked to cytokine biosynthesis by gestational tissues. In turn, cytokine production by gestational tissues has been shown to be regulated by epigenetic mechanisms. In this paper, we demonstrate that cytokine production in gestational tissues is regulated epigenetically in a tissue-specific manner. Furthermore, we show that treatment with a histone deacetylation inhibitor can partially abrogate LPS-stimulated TNFα production in villous placenta but not amnion. LPS treatment significantly (P < 0.05) increased the production of IL-1β (∼10–34-fold), TNFα (∼23–>100-fold) and IL10 (∼6–10-fold) after 24 h of treatment in villous explants, as expected. There were no significant LPS effects on IL1Ra production. AZA treatment did not have any significant effect on any cytokines' production tested either alone or in combination with LPS. Interestingly, however, the stimulatory effects of LPS on TNFα production were partially mitigated (P < 0.05) by TSA treatment in villous explants. We suggest caution in the consideration of histone deacetylation inhibitors in pregnancy due to the different responses in gestational tissues

    Composition constraints of the TRAPPIST-1 planets from their formation

    Full text link
    We study the formation of the TRAPPIST-1 (T1) planets starting shortly after Moon-sized bodies form just exterior to the ice line. Our model includes mass growth from pebble accretion and mergers, fragmentation, type-I migration, and eccentricity and inclination dampening from gas drag. We follow the composition evolution of the planets fed by a dust condensation code that tracks how various dust species condense out of the disc as it cools. We use the final planet compositions to calculate the resulting radii of the planets using a new planet interior structure code and explore various interior structure models. Our model reproduces the broader architecture of the T1 system and constrains the initial water mass fraction of the early embryos and the final relative abundances of the major refractory elements. We find that the inner two planets likely experienced giant impacts and fragments from collisions between planetary embryos often seed the small planets that subsequently grow through pebble accretion. Using our composition constraints we find solutions for a two-layer model, a planet comprised of only a core and mantle, that match observed bulk densities for the two inner planets b and c. This, along with the high number of giant impacts the inner planets experienced, is consistent with recent observations that these planets are likely dessicated. However, two-layer models seem unlikely for most of the remaining outer planets which suggests that these planets have a primordial hydrosphere. Our composition constraints also indicate that no planets are consistent with a core-free interior structure.Comment: 15 pages, 8 figures, 4 tables, and an appendix. Accepted for publication in MNRA
    corecore