72 research outputs found
miR-29b inhibits TGF-β1-induced cell proliferation in articular chondrocytes
Transforming growth factor β1 (TGF-β1) is a known regulator of chondrocyte proliferation and promotes cartilage repair in osteoarthritis (OA). microRNA-29b-3p (miR-29b-3p) is downregulated by TGF-β1 and overexpressed in OA cartilage. However, the ability of miR-29b-3p to mediate the chondrocyte pro-proliferative effects of TGF-β1 is not yet understood. This current study aimed to investigate the effect of miR-29b-3p on TGF-β1-induced cell proliferation in murine articular chondrocytes. The stimulation of chondrocytes by TGF-β1 for 24 h resulted in the downregulation of miR-29b-3p expression. The ratio of G0/G1 phase cells decreased in response to TGF-β1 whereas the ratio of S phase cells was increased. Consistent with this observation, miR-29b-3p overexpression inhibited TGF-β1’s ability to promote the ratio of S phase cells and downregulate the ratio of G0/G1 phase cells. These findings suggest that the downregulation of miR-29b-3p is a likely requirement for TGF-β1-mediated proliferation of murine articular chondrocytes. Furthermore, implying that miR-29b-3p expression may be involved in reduced chondrocyte proliferation in OA
Application across species of a one health approach to liquid sample handling for respiratory based -omics analysis
Abstract Airway inflammation is highly prevalent in horses, with the majority of non-infectious cases being defined as equine asthma. Currently, cytological analysis of airway derived samples is the principal method of assessing lower airway inflammation. Samples can be obtained by tracheal wash (TW) or by lavage of the lower respiratory tract (bronchoalveolar lavage (BAL) fluid; BALF). Although BALF cytology carries significant diagnostic advantages over TW cytology for the diagnosis of equine asthma, sample acquisition is invasive, making it prohibitive for routine and sequential screening of airway health. However, recent technological advances in sample collection and processing have made it possible to determine whether a wider range of analyses might be applied to TW samples. Considering that TW samples are relatively simple to collect, minimally invasive and readily available in the horse, it was considered appropriate to investigate whether, equine tracheal secretions represent a rich source of cells and both transcriptomic and proteomic data. Similar approaches have already been applied to a comparable sample set in humans; namely, induced sputum. Sputum represents a readily available source of airway biofluids enriched in proteins, changes in the expression of which may reveal novel mechanisms in the pathogenesis of respiratory diseases, such as asthma and chronic obstructive pulmonary disease. The aim of this study was to establish a robust protocol to isolate macrophages, protein and RNA for molecular characterization of TW samples and demonstrate the applicability of sample handling to rodent and human pediatric bronchoalveolar lavage fluid isolates. TW samples provided a good quality and yield of both RNA and protein for downstream transcriptomic/proteomic analyses. The sample handling methodologies were successfully applicable to BALF for rodent and human research. TW samples represent a rich source of airway cells, and molecular analysis to facilitate and study airway inflammation, based on both transcriptomic and proteomic analysis. This study provides a necessary methodological platform for future transcriptomic and/or proteomic studies on equine lower respiratory tract secretions and BALF samples from humans and mice
Phenotypic Characterisation of Bovine Alveolar Macrophages Reveals Two Major Subsets with Differential Expression of CD163
Bovine alveolar macrophages (AMs) defend the lungs against pathogens such as Mycobacterium bovis (M. bovis), the causative agent of bovine tuberculosis. However, little is known about the surface molecules expressed by bovine AMs and whether there is heterogeneity within the population. The purpose of this study was to characterise the bovine AM cell surface phenotype using flow cytometry. Bronchoalveolar lavage (BAL) samples from four different calves were stained with a combination of antibodies against immune cell molecules prior to flow cytometric analysis. To assess the degree of expression, we considered the distribution and relative intensities of stained and unstained cells. We demonstrated that bovine AMs have high expression of CD172a, ADGRE1, CD206, and CD14, moderate expression of CD80, MHC II, CD1b, and CD40, low expression of CX3CR1 and CD86, and little or no expression of CD16 and CD26. Two distinct subsets of bovine AMs were identified based on CD163 expression. Subsequent analysis showed that the CD163+ subset had greater expression of other typical macrophage molecules compared to the CD163- subset, suggesting that these cells may perform different roles during infection. The characterisation of the uninfected bovine AM phenotype will provide a foundation for the examination of M. bovis-infected AMs
Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early 1 gene
The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing
Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis
It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behaviour, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15), and sought to determine their gene signatures and thereby provide potential functional annotations for as yet poorly characterized genes. To identify cell type populations we examined the cell-to-cell network based on the similarity of the single-cells’ transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 15 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene co-expression analysis. We combined this analysis with literature mining, the honey bee protein atlas and Gene Ontology analysis to determine cell cluster identity. Of the cell clusters identified, 9 were related to the nervous system, 7 to the fat body, 14 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology of at the cellular level
The fluorescent protein iLOV as a reporter for screening of high-yield production of antimicrobial peptides in Pichia pastoris
The methylotrophic yeast Pichia pastoris is commonly used for the production of recombinant proteins at scale. The identification of an optimally overexpressing strain following transformation can be time and reagent consuming. Fluorescent reporters like GFP have been used to assist identification of superior producers, but their relatively big size, maturation requirements and narrow temperature range restrict their applications. Here, we introduce the use of iLOV, a flavin-based fluorescent protein, as a fluorescent marker to identify P. pastoris high-yielding strains easily and rapidly. The use of this fluorescent protein as a fusion partner is exemplified by the production of the antimicrobial peptide NI01, a difficult target to overexpress in its native form. iLOV fluorescence correlated well with protein expression level and copy number of the chromosomally integrated gene. An easy and simple medium-throughput plate-based screen directly following transformation is demonstrated for low complexity screening, while a high-throughput method using fluorescence-activated cell sorting (FACS) allowed for comprehensive library screening. Both codon optimization of the iLOV_NI01 fusion cassettes and different integration strategies into the P. pastoris genome were tested to produce and isolate a high-yielding strain. Checking the genetic stability, process reproducibility and following the purification of the active native peptide are eased by visualization of and efficient cleavage from the iLOV reporter. We show that this system can be used for expression and screening of several different antimicrobial peptides recombinantly produced in P. pastoris
Csf1r-mApple transgene expression and ligand binding in vivo reveal dynamics of CSF1R expression within the mononuclear phagocyte system
CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r-mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Delta Csf1-enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r-driven reporter lines, Csf1r-mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Delta Csf1r-ECFP-Csf1r-mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r-mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines
Macrophage colony stimulating factor increases hepatic macrophage content, liver growth and lipid accumulation in neonatal rats.
Signaling via the colony-stimulating factor 1 receptor (CSF1R) controls the survival, differentiation, and proliferation of macrophages. Mutations in CSF1 or CSF1R in mice and rats have pleiotropic effects on postnatal somatic growth. We tested the possible application of pig CSF1-Fc fusion protein as a therapy for low birth weight (LBW) at term, using a model based on maternal dexamethasone treatment in rats. Neonatal CSF1-Fc treatment did not alter somatic growth and did not increase the blood monocyte count. Instead, there was a substantial increase in the size of liver in both control and LBW rats, and the treatment greatly exacerbated lipid droplet accumulation seen in the dexamethasone LBW model. These effects were reversed upon cessation of treatment. Transcriptional profiling of the livers supported histochemical evidence of a large increase in macrophages with a resident Kupffer cell phenotype and revealed increased expression of many genes implicated in lipid droplet formation. There was no further increase in hepatocyte proliferation over the already high rates in neonatal liver. In conclusion, treatment of neonatal rats with CSF1-Fc caused an increase in liver size and hepatic lipid accumulation, due to Kupffer cell expansion and/or activation rather than hepatocyte proliferation. Increased liver macrophage numbers and expression of endocytic receptors could mitigate defective clearance functions in neonates. NEW & NOTEWORTHY This study is based on extensive studies in mice and pigs of the role of CSF1/CSF1R in macrophage development and postnatal growth. We extended the study to neonatal rats as a possible therapy for low birth weight. Unlike our previous studies in mice and pigs, there was no increase in hepatocyte proliferation and no increase in monocyte numbers. Instead, neonatal rats treated with CSF1 displayed reversible hepatic steatosis and Kupffer cell expansion
- …