2,454 research outputs found

    Uncovering the impact of organisational culture types on the willingness to share knowledge between projects

    Get PDF
    Current literature has established that organisational culture influences knowledge management efforts; however, it is only recently that research on project management has focused its interest on organisational culture in the context of knowledge sharing and some preliminary studies have been conducted. In response, this paper adds a significant contribution by providing rich empirical evidence of the relationships between culture and the willingness to share knowledge, demonstrating which cultural values are more and which are less likely to improve inter-project knowledge sharing behaviours. The use of interviews and the Organisational Culture Assessment Instrument (OCAI) (Cameron & Quinn, 2005) in the cross-case examination of culture in four participating cases has resulted in rich empirical contributions. Furthermore, this paper adds to the project management literature by introducing the Competing Values Framework (CVF) of Cameron and Quinn (2005) to evaluate knowledge sharing in the inter-project context

    Functional Rehabilitation and Strength Training-Focused Interventions for an Achilles Tendon Rupture and Repair: A Case Report

    Get PDF
    Background and Purpose. Current literature identifies a lack of consensus regarding specific rehabilitation protocols following acute Achilles tendon ruptures. This case report highlights the rehabilitation of a patient following an Achilles rupture and surgical repair, who underwent a physical therapy treatment program, focusing on interventions to increase function, strength, and return to activity. Description. The patient is a 64-year-old male, evaluated in the clinic four weeks following a status-post left Achilles tendon repair surgery, and presented with left ankle pain, decreased left ankle range of motion and decreased left ankle strength. The treatments and interventions used for this patient included Blood Flow Restriction training, interferential current electrical stimulation, ASTYM, and therapeutic exercise. Outcomes. Following 9 weeks of Physical Therapy intervention, with five weeks devoted to Blood Flow Restriction and functional strength training, the patient demonstrated gaining 85% improvement in their ankle active range of motion, normal to good ankle strength, and decreased ankle pain. Patient was returning to prior level of function and performing activities such as hiking, golfing, and playing backyard football with the grandkids. Discussion. Based on the results of this case, incorporating tourniquet-assisted blood flow restriction with functional rehabilitation programs may be a safe and effective protocol component to improve strength, endurance, and overall function after an Achilles tendon ruptur

    An Investigation Into The Biological Responses Induced Following Oral Exposure To Silver nanoparticles

    Get PDF
    This study aims to investigate the biological responses induced by silver nanoparticles (AgNP) following oral exposure. The commonality of AgNP in consumer goods highlights the need for a thorough investigation into the interaction with and subsequent responses evoked in living systems following exposure. Firstly, the potential interaction with and effect of biofluid components, namely cholic acid (CA), deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on AgNP toxicity was investigated. Two cell lines corresponding to organs related to the biofluid components, HepG-2 a hepatocellular carcinoma derived from liver tissue and Hep2 an epithelial cell line, were employed. Physicochemical and cytotoxic screening was performed and the ability of biofluid components to modify AgNP cytotoxicity was explored. No alteration to the physicochemical characteristics of AgNP by biofluid components was observed; however their addition resulted in altered AgNP toxicity. Greater reactive oxygen species (ROS) induction was noted in the presence of CA and DCA. UDCA demonstrated no modification of toxicity in HepG-2 cells however significant modification was observed in Hep2 cells. It was concluded that biofluid components can modify AgNP toxicity but is dependent on the biofluid component itself and the location where it acts. As inhalation is the most common route of nanoparticle entry and given the close proximity to the GI tract, the tendency of cross exposure between the two is prevalent. As such the next line of investigation involved the potential toxicity of AgNP to A549 alveolar epithelial carcinoma cells and the influence of a major component of lung surfactant dipalmitoylphosphatidylcholine (DPPC) on toxicity. This follow up investigation revealed that exposure generated low levels of oxidative stress and a reduction in cell viability. While the presence of DPPC caused no influence on viability studies its presence increased ROS formation and significantly modified the inflammatory response generated by AgNP exposure. These findings suggest a possible interaction between AgNP and DPPC causing particles to become more reactive thus increasing oxidative insult and inflammatory response within A549 cells. The final investigation in this report was on the biological effects of AgNP on the innate immune response of circulating white blood cells. This study determined the ability of AgNP to induce an inflammatory response in THP-1 monocytes by measuring AgNP stimulated gene expression of the pro-inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). A further study on monocytes extracted from a cohort of blood samples, was carried out to compare the inflammatory response to THP-1 monocytes. Finally ELISAs were performed on supernatants of THP-1 monocyte cultures to test for the activation of pro-IL-1β a key mediator of the inflammasome complex. The findings clearly demonstrate AgNP can significantly up-regulate pro-inflammatory cytokine gene expression in THP-1 and primary human blood monocytes, with IL-1β release by inflammasome involvement indicating AgNP can result in an immunologically active state

    Effects of commercial clam aquaculture on biogeochemical cycling in shallow coastal ecosystems

    Get PDF
    As the bivalve aquaculture industry expands worldwide, there is growing interest in its use to mitigate coastal eutrophication, the increased supply of organic matter to an ecosystem. Bivalves influence eutrophication by exerting `top-down\u27 control on primary production through feeding while simultaneously influencing local `bottom-up\u27 effects by increasing nutrient recycling. Additionally, nitrogen (N) is removed via harvest and potentially enhanced denitrification (DNF); however, DNF competes for nitrate (NO3-) with dissimilatory nitrate reduction to ammonium (DNRA), an N retention process. Seasonal in situ flux measurements in Cherrystone Inlet, VA, demonstrated that clam aquaculture sediments are a source of ammonium (NH4+), derived from clam excretion and microbial mineralization of clam biodeposits. Macroalgae, which proliferate on predator-exclusion nets utilized by the US clam industry temporarily sequester this regenerated N. Clam cultivation influences eutrophication locally by providing N in excess of macroalgal N demand, facilitating increased macroalgal production. Experiments investigated the competition between DNF and DNRA within clam sediments. at clam beds in Cherrystone Inlet, DNRA was more favored over DNF than at uncultivated sediments, likely due to the availability of labile organic carbon supplied by clams, low nitrate availability, and sulfidic sediments. However, a comparative study across clam aquaculture sites in the Sacca di Goro, Italy, where Ruditapes philippinarum are cultured, and on the Eastern Shore, VA, where Mercenaria mercenaria are cultured, revealed that the competition between DNF and DNRA is highly dependent on the environment and particularly the relative availability of labile carbon to NO3-. DNF exceeded DNRA at sites in the Sacca di Goro with elevated water column NO3-, concurrent with high abundances of a burrowing amphipod (Corophium sp.) that promoted nitrification. DNRA exceeded DNF at the VA sites and in the eastern region of the Sacca di Goro, where clam biomass was high, water column NO3 low, and sediments were generally reduced. Variability in rates across sites highlights the challenge in generalizing about the role of DNF in enhancing N removal across all clam aquaculture locations. An ecosystem-scale C and N budget was constructed for Cherrystone Inlet to understand the influence of clam cultivation on energy flow and eutrophication at a basin-wide scale. Although clam cultivation occupied only 3% of the Inlet\u27s surface area, the clams filtered a volume equivalent to 7-44% of the system daily. Annually, N regeneration at the clam beds was ~3-fold higher than N removed by harvest. Due to the short water residence time, low watershed N load, and close vicinity of clam beds to the mouth of the Inlet, cultivated clams are likely subsidized by phytoplankton from the Chesapeake Bay. Thus, the N regenerated at the clam beds, which fuels macroalgal production would not be present in the system without facilitation by the cultured clams. This study demonstrates that although clams may dampen eutrophication by removing phytoplankton from the water column, high densities of clams can facilitate rapid N turnover through excretion and DNRA, fueling macroalgae, a form of eutrophication. The effect of clam aquaculture on N removal and subsequently organic matter supply is highly dependent on environmental conditions and clam cultivation practices, as well as the scale considered. at a large-scale (e.g. Chesapeake Bay) clam aquaculture is a net sink for N through harvest, however this study suggests that clam aquaculture may increase N and organic matter supply (i.e. macroalgae) on a basin-wide scale (e.g. Cherrystone Inlet)

    A study of the performance of special classification children on the Binet-Simon, the Pintner non-language, and the Durrell-Sullivan reading capacity tests

    Full text link
    Thesis (M.A.)--Boston University, 1948. This item was digitized by the Internet Archive

    Alien Registration- Sheput, Anna (Fort Fairfield, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/36499/thumbnail.jp

    A feedback-enhanced learning approach for routing in WSN

    Get PDF
    Much research in sensor networks focuses on optimizing traffic originating at multiple sources destined for a single, base station sink. Our work reverses this assumption, targeting scenarios where individual sensor data is sent to multiple destinations. In this case, the data path that produces the least network cost is unlikely to overlap completely with any of the optimal routes between the individual pairs of source/destination nodes. If the entire topology is known, an offline approach can likely find this minimum path. However this is an unrealistic assumption. Instead, our approach uses only local information and converges toward optimal. The novelty of our approach is a technique for actively exploring alternate data routes, sharing feedback regarding route fitness, and learning better routes. While non-optimal choices are made during the discovery phase, the resulting, learned path has lower cost than the initial path. Further, our protocol identifies multiple paths with equal cost, providing additional opportunities for saving energy by switching among alternate routes throughout the lifetime of the application. This paper describes our feedbackbased protocol, shows simulation results demonstrating its benefits and explores the future opportunities of the learning technique presented

    Reduced neural sensitivity to social stimuli in infants at risk for autism

    Get PDF
    In the hope of discovering early markers of autism, attention has recently turned to the study of infants at risk owing to being the younger siblings of children with autism. Because the condition is highly heritable, later-born siblings of diagnosed children are at substantially higher risk for developing autism or the broader autism phenotype than the general population. Currently, there are no strong predictors of autism in early infancy and diagnosis is not reliable until around 3 years of age. Because indicators of brain functioning may be sensitive predictors, and atypical social interactions are characteristic of the syndrome, we examined whether temporal lobe specialization for processing visual and auditory social stimuli during infancy differs in infants at risk. In a functional near-infrared spectroscopy study, infants aged 4–6 months at risk for autism showed less selective neural responses to social stimuli (auditory and visual) than low-risk controls. These group differences could not be attributed to overall levels of attention, developmental stage or chronological age. Our results provide the first demonstration of specific differences in localizable brain function within the first 6 months of life in a group of infants at risk for autism. Further, these differences closely resemble known patterns of neural atypicality in children and adults with autism. Future work will determine whether these differences in infant neural responses to social stimuli predict either later autism or the broader autism phenotype frequently seen in unaffected family members

    Machine Learning across the WSN Layers

    Get PDF
    • …
    corecore