69 research outputs found

    Beyond Kinetic Relations

    Full text link
    We introduce the concept of kinetic equations representing a natural extension of the more conventional notion of a kinetic relation. Algebraic kinetic relations, widely used to model dynamics of dislocations, cracks and phase boundaries, link the instantaneous value of the velocity of a defect with an instantaneous value of the driving force. The new approach generalizes kinetic relations by implying a relation between the velocity and the driving force which is nonlocal in time. To make this relations explicit one needs to integrate the system of kinetic equations. We illustrate the difference between kinetic relation and kinetic equations by working out in full detail a prototypical model of an overdamped defect in a one-dimensional discrete lattice. We show that the minimal nonlocal kinetic description containing now an internal time scale is furnished by a system of two ordinary differential equations coupling the spatial location of defect with another internal parameter that describes configuration of the core region.Comment: Revised version, 33 pages, 9 figure

    Parasitoids indicate major climate-induced shifts in arctic communities

    Get PDF
    Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat,Dryasheathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic,Dryasis being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort
    • 

    corecore