97 research outputs found
Synthesis of lipid-linked precursors of the bacterial cell wall is governed by a feedback control mechanism in Pseudomonas aeruginosa
Many bacterial surface glycans such as the peptidoglycan (PG) cell wall are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting carrier is distributed among competing pathways has remained unclear. Here we describe the isolation of hyperactive variants of Pseudomonas aeruginosa MraY, the enzyme that forms the first lipid-linked PG precursor. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in vitro. The activated MraY variants have substitutions that map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural and molecular dynamics results suggest that this cavity is a binding site for externalized lipid II. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism that prevents the sequestration of lipid carrier in the PG biogenesis pathway
The Comprehensive Post-Acute Stroke Services (COMPASS) study: design and methods for a cluster-randomized pragmatic trial
Background: Patients discharged home after stroke face significant challenges managing residual neurological deficits, secondary prevention, and pre-existing chronic conditions. Post-discharge care is often fragmented leading to increased healthcare costs, readmissions, and sub-optimal utilization of rehabilitation and community services. The COMprehensive Post-Acute Stroke Services (COMPASS) Study is an ongoing cluster-randomized pragmatic trial to assess the effectiveness of a comprehensive, evidence-based, post-acute care model on patient-centered outcomes.
Methods: Forty-one hospitals in North Carolina were randomized (as 40 units) to either implement the COMPASS care model or continue their usual care. The recruitment goal is 6000 patients (3000 per arm). Hospital staff ascertain and enroll patients discharged home with a clinical diagnosis of stroke or transient ischemic attack. Patients discharged from intervention hospitals receive 2-day telephone follow-up; a comprehensive clinic visit within 2 weeks that includes a neurological evaluation, assessments of social and functional determinants of health, and an individualized COMPASS Care PlanTM integrated with a community-specific resource database; and additional follow-up calls at 30 and 60 days post-stroke discharge. This model is consistent with the Centers for Medicare and Medicaid Services transitional care management services provided by physicians or advanced practice providers with support from a nurse to conduct patient assessments and coordinate follow-up services. Patients discharged from usual care hospitals represent the control group and receive the standard of care in place at that hospital. Patient-centered outcomes are collected from telephone surveys administered at 90 days. The primary endpoint is patient-reported functional status as measured by the Stroke Impact Scale 16. Secondary outcomes are: caregiver strain, all-cause readmissions, mortality, healthcare utilization, and medication adherence. The study engages patients, caregivers, and other stakeholders (including policymakers, advocacy groups, payers, and local community coalitions) to advise and support the design, implementation, and sustainability of the COMPASS care model.
Discussion: Given the high societal and economic burden of stroke, identifying a care model to improve recovery, independence, and quality of life is critical for stroke survivors and their caregivers. The pragmatic trial design provides a real-world assessment of the COMPASS care model effectiveness and will facilitate rapid implementation into clinical practice if successful
Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study
Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-Analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = \uc3\ua2 '0.24 to \uc3\ua2 '0.73; P < 1.49 \uc3\u97 10 \uc3\ua2 '4), and lower thickness in the precentral gyri bilaterally (d = \uc3\ua2 '0.34 to \uc3\ua2 '0.52; P < 4.31 \uc3\u97 10 \uc3\ua2 '6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = \uc3\ua2 '1.73 to \uc3\ua2 '1.91, P < 1.4 \uc3\u97 10 \uc3\ua2 '19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = \uc3\ua2 '0.36 to \uc3\ua2 '0.52; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = \uc3\ua2 '0.29 to \uc3\ua2 '0.54; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = \uc3\ua2 '0.27 to \uc3\ua2 '0.51; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < \uc3\ua2 '0.0018; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed
The ENIGMA-Epilepsy working group: Mapping disease from large data sets
Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smallerâscale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now wellâestablished by the ENIGMA Consortium, ENIGMAâEpilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and eventâbased modeling analysis. We explore age of onsetâ and durationârelated features, as well as phenomenaâspecific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMAâEpilepsy
Brain-Age Prediction: Systematic Evaluation of Site Effects, and Sample Age Range and Size
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brainâage) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brainâage has highlighted the need for robust and publicly available brainâage models preâtrained on data from large samples of healthy individuals. To address this need we have previously released a developmental brainâage model. Here we expand this work to develop, empirically validate, and disseminate a preâtrained brainâage model to cover most of the human lifespan. To achieve this, we selected the bestâperforming model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brainâage prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5â90âyears; 53.59% female). The preâtrained models were tested for crossâdataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8â80âyears; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9â25âyears; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two ageâbins (5â40 and 40â90âyears) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brainâage prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an openâscience, webâbased platform for individualized neuroimaging metrics
Brain-Age Prediction: Systematic Evaluation of Site Effects, and Sample Age Range and Size
Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brainâage) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brainâage has highlighted the need for robust and publicly available brainâage models preâtrained on data from large samples of healthy individuals. To address this need we have previously released a developmental brainâage model. Here we expand this work to develop, empirically validate, and disseminate a preâtrained brainâage model to cover most of the human lifespan. To achieve this, we selected the bestâperforming model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brainâage prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5â90âyears; 53.59% female). The preâtrained models were tested for crossâdataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8â80âyears; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9â25âyears; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two ageâbins (5â40 and 40â90âyears) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brainâage prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an openâscience, webâbased platform for individualized neuroimaging metrics
Event-based modelling in temporal lobe epilepsy demonstrates progressive atrophy from cross-sectional data
OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multi-centre cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area and subcortical brain volumes from T1-weighted (T1W) MRI scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1,625Â healthy controls from 25 centres. Features with a moderate case-control effect size (Cohen's dâ„0.5) were used to train an Event-Based Model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age of onset and anti-seizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume and, finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated to duration of illness (Spearman's Ï=0.293, p=7.03x10-16 ), age of onset (Ï=-0.18, p=9.82x10-7 ) and ASM resistance (AUC=0.59, p=0.043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM stage zero, which represents MTLE-HS with mild or non-detectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features
- âŠ