42 research outputs found

    Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo

    Get PDF
    Berberine (Ber) is a herbal alkaloid with pharmacological activity in general and a high anticancer potency in particular. However, due to its low bioavailability, the difficulty in reaching a target and choosing the right dose, there is a need to improve approaches of Ber use in anticancer therapy. In this study, Ber, noncovalently bound to a carbon nanostructure C60 fullerene (C60) at various molar ratios of the components, was explored against Lewis lung carcinoma (LLC)

    Cytotoxic effects of dimorfolido-N-trichloroacetylphosphorylamide and dimorfolido-N-benzoylphosphorylamide in combination with C60 fullerene on leukemic cells and docking study of their interaction with DNA

    Get PDF
    Dimorfolido-N-trichloroacetylphosphorylamide (HL1) and dimorfolido-N-benzoylphosphorylamide (HL2) as representatives of carbacylamidophosphates were synthesized and identified by the methods of IR, 1H, and 31P NMR spectroscopy. In vitro HL1 and HL2 at 1 mM concentration caused cell specific and time-dependent decrease of leukemic cell viability. Compounds caused the similar gradual decrease of Jurkat cells viability at 72 h (by 35%). HL1 had earlier and more profound toxic effect as compared to HL2 regardless on leukemic cell line. Viability of Molt-16 and CCRF-CEM cells under the action of HL1 was decreased at 24 h (by 32 and 45%, respectively) with no substantial further reducing up to 72 h. Toxic effect of HL2 was detected only at 72 h of incubation of Jurkat and Molt-16 cells (cell viability was decreased by 40 and 45%, respectively). It was shown that C60 fullerene enhanced the toxic effect of HL2 on leukemic cells. Viability of Jurkat and CCRF-CEM cells at combined action of C60 fullerene and HL2 was decreased at 72 h (by 20 and 24%, respectively) in comparison with the effect of HL2 taken separately. In silico study showed that HL1 and HL2 can interact with DNA and form complexes with DNA both separately and in combination with C60 fullerene. More stable complexes are formed when DNA interacts with HL1 or C60 + HL2 structure. Strong stacking interactions can be formed between HL2 and C60 fullerene. Differences in the types of identified bonds and ways of binding can determine distinction in cytotoxic effects of studied compounds

    Modeling and Computer Simulation of Nanocomplexation for Cancer Therapy

    No full text
    Remark: This book constitutes the refereed post-conference proceedings of the 6th EAI International Conference Computer on Science and Engineering in Health Services (COMPSE 2022), which took place in Mexico City and online, June 28th, 2022. The papers are grouped on thematic topics: application of tools delivered by the COVID-19 pandemic; health services; computer and data science; and industry 4.0 in logistics and supply chain. The content is relevant to researchers, academics, students and professionals. Abstract: Smart systems and data-driven services have the potential to answer medical needs in nanomedicine to get faster to the clinic and manufacturing stage. As an example from galenics, we explored the molecular packing within nanoparticles composed of fullerene C60 (C60) and the anthracycline antibiotic doxorubicin (Dox); the nanoparticle was previously proven to be a promising candidate for photodynamic and chemotherapeutic treatment of cancer. The Dox-C60 hybrid was evaluated to be around 135 nm and forms an aqueous monodisperse colloid solution. We consider a non-standard packing problem for the geometric design of the Dox-C60 nanocomplex. Each placement object was a disconnected set with a core sphere and two identical spherical components that were allowed moving only along the core sphere orbit at the given distance. Allowable distances between each pair of components, as well as between objects, were given. All disconnected objects could be freely moving within the given volume (cuboid). The packing problem was aimed to maximize the number of disconnected objects that could be fully arranged inside the given volume, considering distance constraints. The problem was formulated as MIP (mixed integer problem). A solution strategy was proposed that combines multistart strategy, nonlinear optimization, and decomposition algorithm. Computational results for 2D and 3D objects were provided.Our findings may contribute to solve molecular packaging problems which play a role in synthesis, upscaling, production as well as formulation, and medication of the complexed drug

    Können wir Krebs in Sekundenbruchteilen vernichten?

    No full text

    First FLASH Radiation Therapy Experiments

    No full text

    Preparation of bio-lab @ PITZ

    No full text

    Synergistic Chemo- and Photodynamic Treatment of Cancer Cells with C60 Fullerene Nanocomplexes

    No full text
    Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. In the current study the dual functionality of C60 as a photosensitizer and a drug nanocarrier was exploited to improve the efficiency of chemotherapeutic drugs towards human leukemic cells. Pristine C60 demonstrated time-dependent accumulation with predominant mitochondrial localization in leukemic cells. C60’s effects on leukemic cells irradiated with high power single chip LEDs of different wavelengths were assessed to find out the most effective photoexcitation conditions. A C60-based noncovalent nanosized system as a carrier for an optimized drug delivery to the cells was evaluated in accordance to its physicochemical properties and toxic effects. Finally, nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios were explored to improve the efficiency of cell treatment, complementing it with photodynamic approach. A proposed treatment strategy was developed for C60 nanocomplexes with the common chemotherapeutic drug Doxorubicin, whose intracellular accumulation and localization, cytotoxicity and mechanism of action were investigated. The developed strategy was revealed to be transferable to an alternative potent anticancer drug – the herbal alkaloid Berberine. Hereafter, a strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation was revealed. Presented data indicate that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment

    Synergistische chemo- und photodynamische Behandlung von Krebszellen mit C60_{60}-Fulleren-Nanokomplexen

    No full text
    Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. In the current study the dual functionality of C60 as a photosensitizer and a drug nanocarrier was exploited to improve the efficiency of chemotherapeutic drugs towards human leukemic cells. Pristine C60 demonstrated time-dependent accumulation with predominant mitochondrial localization in leukemic cells. C60’s effects on leukemic cells irradiated with high power single chip LEDs of different wavelengths were assessed to find out the most effective photoexcitation conditions. A C60-based noncovalent nanosized system as a carrier for an optimized drug delivery to the cells was evaluated in accordance to its physicochemical properties and toxic effects. Finally, nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios were explored to improve the efficiency of cell treatment, complementing it with photodynamic approach. A proposed treatment strategy was developed for C60 nanocomplexes with the common chemotherapeutic drug Doxorubicin, whose intracellular accumulation and localization, cytotoxicity and mechanism of action were investigated. The developed strategy was revealed to be transferable to an alternative potent anticancer drug – the herbal alkaloid Berberine. Hereafter, a strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation was revealed. Presented data indicate that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment.Kürzliche Fortschritte in der Nanotechnologie haben Interesse an einer biomedizinischen Anwendung des Kohlenstoffnanopartikels C60 Fulleren (C60) aufgrund seiner einzigartigen Struktur und breiten biologischen Aktivität geweckt. In der aktuellen Studie wurde die doppelte Funktionalität von C60 als Photosensibilisator und als Wirkstoff-Nanoträger genutzt, um die Wirkung von Chemotherapeutika auf menschliche Leukämiezellen zu verbessern. C60 alleine zeigte in den Zellen eine zeitabhängige Akkumulation mit vorherrschender mitochondrialer Lokalisation. Die Wirkung von C60 auf Leukämiezellen, die mit unterschiedlicher Wellenlänge bestrahlt wurden, wurde bewertet, um die effektivsten Photoanregungsbedingungen zu finden. Die physikochemischen Eigenschaften und toxischen Wirkungen von C60 auf die Leukämiezellen wurden nach nicht kovalenter Bindung von Arzneistoffen bewertet. Schließlich wurden nanomolare Mengen von C60-Wirkstoff-Nanokomplexen in Molverhältnissen von 1:1 und 2:1 untersucht, um die Effizienz der Behandlung von Zellen zu verbessern und sie durch photodynamischen Ansatz zu ergänzen. Mit dem gängigen Chemotherapeutikum Doxorubicin wurde eine Behandlungsstrategie entwickelt und dessen intrazelluläre Akkumulation und Lokalisation, Zytotoxizität und Wirkmechanismus untersucht wurden. Es wurde gezeigt, dass die entwickelte Strategie auch auf ein alternatives Krebsmedikament übertragbar ist – das pflanzliche Alkaloid Berberin. Die erhaltenen Daten deuten darauf hin, dass eine Kombination von chemo- und photodynamischen Behandlungen mit C60-Nanokomplexen einen vielversprechenden synergetischen Ansatz für die Krebsbehandlung bieten könnte

    R&D Platform FLASHâ„“ab\mathcal{{\ell}ab}@PITZ

    No full text

    Recent UHDR (FLASH) RT experiments

    No full text
    corecore