25 research outputs found

    Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo

    Get PDF
    Berberine (Ber) is a herbal alkaloid with pharmacological activity in general and a high anticancer potency in particular. However, due to its low bioavailability, the difficulty in reaching a target and choosing the right dose, there is a need to improve approaches of Ber use in anticancer therapy. In this study, Ber, noncovalently bound to a carbon nanostructure C60 fullerene (C60) at various molar ratios of the components, was explored against Lewis lung carcinoma (LLC)

    Cytotoxic effects of dimorfolido-N-trichloroacetylphosphorylamide and dimorfolido-N-benzoylphosphorylamide in combination with C60 fullerene on leukemic cells and docking study of their interaction with DNA

    Get PDF
    Dimorfolido-N-trichloroacetylphosphorylamide (HL1) and dimorfolido-N-benzoylphosphorylamide (HL2) as representatives of carbacylamidophosphates were synthesized and identified by the methods of IR, 1H, and 31P NMR spectroscopy. In vitro HL1 and HL2 at 1 mM concentration caused cell specific and time-dependent decrease of leukemic cell viability. Compounds caused the similar gradual decrease of Jurkat cells viability at 72 h (by 35%). HL1 had earlier and more profound toxic effect as compared to HL2 regardless on leukemic cell line. Viability of Molt-16 and CCRF-CEM cells under the action of HL1 was decreased at 24 h (by 32 and 45%, respectively) with no substantial further reducing up to 72 h. Toxic effect of HL2 was detected only at 72 h of incubation of Jurkat and Molt-16 cells (cell viability was decreased by 40 and 45%, respectively). It was shown that C60 fullerene enhanced the toxic effect of HL2 on leukemic cells. Viability of Jurkat and CCRF-CEM cells at combined action of C60 fullerene and HL2 was decreased at 72 h (by 20 and 24%, respectively) in comparison with the effect of HL2 taken separately. In silico study showed that HL1 and HL2 can interact with DNA and form complexes with DNA both separately and in combination with C60 fullerene. More stable complexes are formed when DNA interacts with HL1 or C60 + HL2 structure. Strong stacking interactions can be formed between HL2 and C60 fullerene. Differences in the types of identified bonds and ways of binding can determine distinction in cytotoxic effects of studied compounds

    First FLASH Radiation Therapy Experiments

    No full text

    R&D Platform FLASHâ„“ab\mathcal{{\ell}ab}@PITZ

    No full text

    Recent UHDR (FLASH) RT experiments

    No full text

    Synergistische chemo- und photodynamische Behandlung von Krebszellen mit C60_{60}-Fulleren-Nanokomplexen

    No full text
    Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. In the current study the dual functionality of C60 as a photosensitizer and a drug nanocarrier was exploited to improve the efficiency of chemotherapeutic drugs towards human leukemic cells. Pristine C60 demonstrated time-dependent accumulation with predominant mitochondrial localization in leukemic cells. C60’s effects on leukemic cells irradiated with high power single chip LEDs of different wavelengths were assessed to find out the most effective photoexcitation conditions. A C60-based noncovalent nanosized system as a carrier for an optimized drug delivery to the cells was evaluated in accordance to its physicochemical properties and toxic effects. Finally, nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios were explored to improve the efficiency of cell treatment, complementing it with photodynamic approach. A proposed treatment strategy was developed for C60 nanocomplexes with the common chemotherapeutic drug Doxorubicin, whose intracellular accumulation and localization, cytotoxicity and mechanism of action were investigated. The developed strategy was revealed to be transferable to an alternative potent anticancer drug – the herbal alkaloid Berberine. Hereafter, a strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation was revealed. Presented data indicate that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment.Kürzliche Fortschritte in der Nanotechnologie haben Interesse an einer biomedizinischen Anwendung des Kohlenstoffnanopartikels C60 Fulleren (C60) aufgrund seiner einzigartigen Struktur und breiten biologischen Aktivität geweckt. In der aktuellen Studie wurde die doppelte Funktionalität von C60 als Photosensibilisator und als Wirkstoff-Nanoträger genutzt, um die Wirkung von Chemotherapeutika auf menschliche Leukämiezellen zu verbessern. C60 alleine zeigte in den Zellen eine zeitabhängige Akkumulation mit vorherrschender mitochondrialer Lokalisation. Die Wirkung von C60 auf Leukämiezellen, die mit unterschiedlicher Wellenlänge bestrahlt wurden, wurde bewertet, um die effektivsten Photoanregungsbedingungen zu finden. Die physikochemischen Eigenschaften und toxischen Wirkungen von C60 auf die Leukämiezellen wurden nach nicht kovalenter Bindung von Arzneistoffen bewertet. Schließlich wurden nanomolare Mengen von C60-Wirkstoff-Nanokomplexen in Molverhältnissen von 1:1 und 2:1 untersucht, um die Effizienz der Behandlung von Zellen zu verbessern und sie durch photodynamischen Ansatz zu ergänzen. Mit dem gängigen Chemotherapeutikum Doxorubicin wurde eine Behandlungsstrategie entwickelt und dessen intrazelluläre Akkumulation und Lokalisation, Zytotoxizität und Wirkmechanismus untersucht wurden. Es wurde gezeigt, dass die entwickelte Strategie auch auf ein alternatives Krebsmedikament übertragbar ist – das pflanzliche Alkaloid Berberin. Die erhaltenen Daten deuten darauf hin, dass eine Kombination von chemo- und photodynamischen Behandlungen mit C60-Nanokomplexen einen vielversprechenden synergetischen Ansatz für die Krebsbehandlung bieten könnte

    HPLC-ESI-MS method for C60 fullerene mitochondrial content quantification

    Get PDF
    The presented dataset describes the quantification of carbon nanoparticle C60 fullerene accumulated in mitochondria of human leukemic cells treated with nanostructure. Firstly, the high performance liquid chromatography–electro spray ionization–mass spectrometry (HPLC-ESI-MS) method was developed for quantitative analysis of pristine C60 fullerene. Then, human leukemic cells were incubated with C60 fullerene, homogenized and subjected to the differential centrifugation to retrieve mitochondrial fraction. The C60 fullerene content was quantified by HPLC-ESI-MS in extracts of cellular fractions. This data article refers to the research article “C60 Fullerene Accumulation in Human Leukemic Cells and Perspectives of LED-mediated Photodynamic Therapy” by Grebinyk et al

    C60 fullerene accumulation in human leukemic cells and perspectives of LED-mediated photodynamic therapy

    Get PDF
    Recent progress in nanobiotechnology has attracted interest to a biomedical application of the carbon nanostructure C60 fullerene since it possesses a unique structure and versatile biological activity. C60 fullerene potential application in the frame of cancer photodynamic therapy (PDT) relies on rapid development of new light sources as well as on better understanding of the fullerene interaction with cells. The aim of this study was to analyze C60 fullerene effects on human leukemic cells (CCRF-CEM) in combination with high power single chip light-emitting diodes (LEDs) light irradiation of different wavelengths: ultraviolet (UV, 365 nm), violet (405 nm), green (515 nm) and red (632 nm). The time-dependent accumulation of fullerene C60 in CCRF-CEM cells up to 250 ng/106 cells at 24 h with predominant localization within mitochondria was demonstrated with immunocytochemical staining and liquid chromatography mass spectrometry. In a cell viability assay we studied photoexcitation of the accumulated C60 nanostructures with ultraviolet or violet LEDs and could prove that significant phototoxic effects did arise. A less pronounced C60 fullerene phototoxic effect was observed after irradiation with green, and no effect was detected with red light. A C60 fullerene photoactivation with violet light induced substantial ROS generation and apoptotic cell death, confirmed by caspase3/7 activation and plasma membrane phosphatidylserine externalization. Our work proved C60 fullerene ability to induce apoptosis of leukemic cells after photoexcitation with high power single chip 405 nm LED as a light source. This underlined the potential for application of C60 nanostructure as a photosensitizer for anticancer therapy

    Complexation with C60 Fullerene Increases Doxorubicin Efficiency against Leukemic Cells In Vitro

    Get PDF
    Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C60 fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells. Here, we studied the physicochemical properties and anticancer activity of C60 fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C60-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed ≤ 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug’s level evidenced C60 fullerene considerable nanocarrier function. The results of this study indicated that C60 fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells

    Silent Death by Sound: C<sub>60</sub> Fullerene Sonodynamic Treatment of Cancer Cells

    Get PDF
    The acoustic pressure waves of ultrasound (US) not only penetrate biological tissues deeper than light, but they also generate light emission, termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low-intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng/106 cells). Half of extranuclear C60 is localized within mitochondria. The efficiency of the C60 nanostructure’s sonoexcitation with 1 MHz US was tested with cell-based assays. A significant proapoptotic sonotoxic effect of C60 was found for HeLa cells. C60′s ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment
    corecore