266 research outputs found

    Facing with Collaborative Robots : The Subjective Experience in Senior and Younger Workers

    Get PDF
    In the past few years, collaborative robots (i.e., cobots) have been largely adopted within industrial manufacturing. Although robots can support companies and workers in carrying out complex activities and improving productivity, human factors related to cobot operators have not yet been thoroughly investigated. The present study aims to understand the subjective experience of younger and senior workers interacting with an industrial collaborative robot. Results show that workers' acceptance of cobots is high, regardless of age and control modality used. Interesting differences between seniors and younger adults emerged in the evaluations of user experience, usability, and perceived workload of participants and are detailed and commented in the last part of the work.Peer reviewe

    New and Reconditioned Electrical and Electronic Equipment. How does change the environmental performance?

    Get PDF
    The scope of this study, carried out within the LIFE12 ENV/IT001058 - "WEEENmodels" project, was to compare the environmental performance of the life cycle of new electrical and electronic equipment (EEE) and the reused one through the Life Cycle Assessment (LCA) methodology. Different set of replaced components have been evaluated in order to understand which determines the best solution. Finally, both attributional and consequential LCI (Life Cycle Inventory) modelling have been implemented. A representative product has been considered for each WEEE group, assuming that it generates the same environmental damage of the other products belonging to the same category. In particular, the following representative products have been selected: refrigerator (R1), washing machine (R2), cathode ray tube (CRT) (R3), laptop (R4) and fluorescent lamp (R5). In addition, in the use phase, lower performance of reconditioned EEE has been taken into account, e.g. higher energy consumptions. The lifespan of the reused product has been supposed to be equal to half-life time of an equivalent new product. This study evaluated different set of replaced components for each WEEE category in order to examine how the environmental performance can vary adopting different maintenance choices in the reconditioning step. In particular, Scenario A represents the set of replaced components, which damage more frequently; Scenario B is just an alternative set of replaced components. The environmental comparison between new and reused WEEE, adopting attributional LCI modelling, showed that Scenario B produces a damage decrease for all WEEE categories. Moving on the consequential LCI modelling, the environmental comparison highlighted for both scenarios a considerable damage reduction for the reused EEE respect the new one. In addition, Scenario B determined the best environmental performance. Furthermore, for the reused R1, R2, R3 the analysis of results carried out environmental credits. This is due to the avoided burdens associated to the manufacturing of the new EEE, since the system boundaries have been enlarged until to considering the avoided production of the new product. Attributional and consequential LCI modelling performed different LCIA results. Following the methodological guidance for the identification of the most adequate LCI modelling framework presented by Laurent et al., 2014, it would recommend to adopt consequential LCI modelling. But we suggest to LCA practitioner to focus also the attention on the request of who commissioned the project, which often in the waste field are local administrations. Generally, they wants a snapshot of the real effects that waste management policies provoke on human health and environment. For this reason, attributional LCI modelling would be the proper LCI modelling to achieve this scope. Considering this LCI modelling the Scenario B determines the best environmental performance

    Preparation for reuse activity of waste electrical and electronic equipment: Environmental performance, cost externality and job creation

    Get PDF
    The European Waste Electrical and Electronic Equipment system introduced measures to encourage both the reduction of the amount of electronic waste and its separation to prepare for reuse. The aim of this study is compare the environmental performance, cost externality and job creation of the whole life cycle of new and reconditioned electrical and electronic equipment by adopting Life Cycle Assessment methodology. Five electrical and electronic equipment categories were investigated and the data collection was made on an Italian context. The refurbishing of breakdown electrical and electronic equipment was assessed by considering different sets of faulty components (Scenario A and B) and a total of 25 scenarios were studied. Moreover, both attributional and consequential life cycle inventory modelling framework were adopted to represent the investigated scenarios. The outcomes highlighted that the preparation for reuse process leads to obtaining a sustainable electronic device than the new one, depending on which set of components are replaced. Adopting Scenario B with the attributional model, the environmental damage of reconditioned electrical and electronic equipment decreases compared to the new one. Conversely, the consequential approach determines an environmental credit for all repaired electronic devices except for one category; in particular, Scenario A produced the largest environmental advantage. The analyses of external costs and social aspects confirm that the preparation for reuse activity allows to obtain a more sustainable product than a new one. For these two latter aspects, the results showed a turnaround passing from attributional model to consequential one. Noting the variability in results adopting both different life cycle inventory modelling framework and set of replaced components, the Life Cycle Assessment practitioner, that conducted the study, should help the decision-makers to determine which scenario is more sustainable accomplishing an adequate choice

    Designing for Mixed Reality Urban Exploration

    Get PDF
    This paper introduces a design framework for mixed reality urban exploration (MRUE), based on a concrete implementation in a historical city. The framework integrates different modalities, such as virtual reality (VR), augmented reality (AR), and haptics-audio interfaces, as well as advanced features such as personalized recommendations, social exploration, and itinerary management. It permits to address a number of concerns regarding information overload, safety, and quality of the experience, which are not sufficiently tackled in traditional non-integrated approaches. This study presents an integrated mobile platform built on top of this framework and reflects on the lessons learned.Peer reviewe

    CANCER RISK FROM HEAVY METAL EXPOSURE IN RECYCLING WASTE OF ELECTRICAL AND ELECTRONIC EQUIPMENT: PRELIMINARY RESULTS FROM THE WEEENMODELS EUROPEAN LIFE PROGRAM

    Get PDF
    Background and objectives: When electrical and electronic equipment reaches its end of life, it becomes ‘Waste Electrical and Electronic Equipment’ (WEEE). The growing amount of this type of waste has posed significant challenges to waste management, since WEEE contains a whole range of toxic chemicals having relevant environmental and health implications. The WEEE life cycle may expose the general population and workers to various toxic chemicals, such as heavy metals. We conducted a health risk assessment to evaluate the cancer risk derived from environmental and occupational exposure to trace elements from different recycling procedures (electronic scrap in blister copper, treatment of metals recovery in copper smelter, treatment of shredding, pyrometallurgical treatment of Li-ion battery). We considered the typical production of WEEE in a municipality of 150.0000 inhabitants, where a Life Cycle assessment (LCA) was carried out. Methods: Outdoor (1km2 around a WEEE treatment plant) and indoor (factory volume of 3200m3) emissions generated from the above-mentioned procedures were computed, to perform a health risk assessment for occupationally-exposed workers and for the general population around the plant. Dose of the heavy metals cadmium, nickel, arsenic inhaled by the potentially exposed population was estimated using the values obtained through a toxicological model. Cancer risk due to inhalation was calculated using the method proposed by the California Office of Environmental Health and Hazard Assessment. Results and Conclusions: For the heavy metals considered, generated from WEEE treatment, these preliminary results show negligible cancer risk for the general population. On the converse, some risks may be present for occupational exposures linked to specific procedures (from cancer risk of 1,42x10-3 for men working in shredding procedure and exposed to nickel to cancer risk of 4,68x10- 4 for women working with electronic scrap and exposed to arsenic)

    Assessing Cancer Risk from Heavy Metals in Recycling Waste Electrical and Electronic Equipment: Preliminary Results from the WEENMODELS European Life Programme

    Get PDF
    Introduction The growing amount of waste derived from electrical and electronic equipment (WEEE) poses significant challenges to waste management, due to the presence of toxic chemicals with environmental and health implications for the general population and for occupationally-exposed workers. Methods Based on an toxicological and epidemiologic evaluation, we carried out a health risk assessment to evaluate the cancer risk deriving from environmental and occupational exposure to heavy metals released during different WEEE recycling procedures (electronic scrap in blister copper, treatment of metals recovery in copper smelter, treatment of shredding, pyrometallurgical treatment of Li-ion battery). We considered the typical WEEE production in a municipality of 150.0000 inhabitants, carrying out a Life Cycle Assessment. Outdoor (1 square km around a treatment plant) and indoor (for a factory volume of 3200 m3) emissions generated during the WEEE recycling procedures were computed. In particular, we estimated the amount of Cd, Ni and As inhaled by the potentially exposed population. We computed the cancer risk due to inhalation of these heavy metals in residents and workers using the methodology proposed by the California Office of Environmental Health and Hazard Assessment Results For the metals considered, our results showed negligible cancer risk (from 2,21x10-11 to 4,31x10-08) for the general population around the plant. On the converse, occupational exposures linked to specific procedures were associated with a cancer risk of 1,42x10-3 for workers in the shredding procedures mainly due to Ni exposure, and of 4,68x10-4 for workers with electronic scrap and exposed to As. Conclusions Based on our preliminary results from an integrated toxicological and epidemiologic approach, WEEE life cycle may be linked to health risks for workers in the recycling procedures, while it does not seem to adversely affect health of the general population around the treatment plants

    Longitudinal follow‐up of patients with thalassaemia intermedia who started transfusion therapy in adulthood: a cohort study

    Get PDF
    SummaryWe longitudinally evaluated the effects of regular blood transfusions (BTs), in the real‐life context of the Myocardial Iron Overload in Thalassaemia network, in patients with thalassaemia intermedia (TI). We considered 88 patients with TI (52 females) who started regular BTs after the age of 18 years. Magnetic resonance imaging was used to quantify iron overload and biventricular function. For 56·8% of the patients there were more than two indications for the transition to regular BTs, with anaemia present in 94·0% of the cases. A significant decrease in nucleated red blood cells, platelets, lactate dehydrogenase, bilirubin, and uric acid levels was detected 6 months after starting regular BTs. After the transition to the regular BT regimen there was a significant increase only in the frequency of hypothyroidism and osteopenia, and a significant decrease in liver iron and cardiac index. The percentage of chelated patients increased significantly after starting regular BTs. The decision to regularly transfuse patients with TI may represent a way to prevent or slow down the natural progression of the disease, despite the more complex initial management

    I.S.Mu.L.T. Achilles Tendon Ruptures Guidelines

    Get PDF
    This work provides easily accessible guidelines for the diagnosis, treatment and rehabilitation of Achilles tendon ruptures. These guidelines could be considered as recommendations for good clinical practice developed through a process of systematic review of the literature and expert opinion, to improve the quality of care for the individual patient and rationalize the use of resources. This work is divided into two sessions: 1) questions about hot topics; 2) answers to the questions following Evidence Based Medicine principles. Despite the frequency of the pathology andthe high level of satisfaction achieved in treatment of Achilles tendon ruptures, a global consensus is lacking. In fact, there is not a uniform treatment and rehabilitation protocol used for Achilles tendon ruptures
    corecore