50 research outputs found

    Beyond Intrinsic and Instrumental: Third-Category Value in Environmental Ethics and Environmental Policy

    Get PDF
    Values have always tended to play a central role in discourse on the environment, a tendency which is currently particularly evident in the biodiversity context. Traditionally, arguments about the environment have invoked instrumental value to highlight the necessity or utility of a healthy environment for people and intrinsic value to emphasize the importance of protecting nature for its own sake. More recently, this value dichotomy has been challenged, and the notion of a third value category – relational value – has been introduced into the political and social conservation discussion. In the field of environmental philosophy, the idea of a third category of environmental value already has a longer tradition. This article describes and compares several philosophical accounts of third-category environmental value to contribute to a better characterization of relational value and thus to a better understanding of the role this type of value can play in environmental discourse and policy

    The Conception of Life in Synthetic Biology

    Get PDF
    The phrase ‘synthetic biology' is used to describe a set of different scientific and technological disciplines, which share the objective to design and produce new life forms. This essay addresses the following questions: What conception of life stands behind this ambitious objective? In what relation does this conception of life stand to that of traditional biology and biotechnology? And, could such a conception of life raise ethical concerns? Three different observations that provide useful indications for the conception of life in synthetic biology will be discussed in detail: 1. Synthetic biologists focus on different features of living organisms in order to design new life forms, 2. Synthetic biologists want to contribute to the understanding of life, and 3. Synthetic biologists want to modify life through a rational design, which implies the notions of utilising, minimising/optimising, varying and overcoming life. These observations indicate a tight connection between science and technology, a focus on selected aspects of life, a production-oriented approach to life, and a design-oriented understanding of life. It will be argued that through this conception of life synthetic biologists present life in a different light. This conception of life will be illustrated by the metaphor of a toolbox. According to the notion of life as a toolbox, the different features of living organisms are perceived as various rationally designed instruments that can be used for the production of the living organism itself or secondary products made by the organism. According to certain ethical positions this conception of life might raise ethical concerns related to the status of the organism, the motives of the scientists and the role of technology in our societ

    ‘I owe it to the animals’: The bidirectionality of Swiss alpine farmers' relational values

    Full text link
    Relational values have recently been proposed as a concept to expand our understanding of environmental values from the categories previously dominating the discourse: instrumental (nature for people's sake) and intrinsic values (nature for its own sake). Empirical and conceptual research on relational values has so far focused on the content of relational values or their relationship to other kinds of values. In this paper, we fill a key gap in understanding exactly what relational values are and how they work; we call this the ‘syntax’ of relational values. We do so by applying the Syntax of Environmental Values Framework, which describes relational values as bidirectional, expressed by genuine respect and care on the one hand and an eudaimonic contribution to wellbeing on the other. We developed a novel interview protocol which we applied in semistructured interviews with Swiss alpine farmers. We examine how both of these directions are manifested in farmers' relational values. Our results showed how the bidirectionality manifests in relational values of alpine farmers. Specifically, we identified three components of each directionality. The intrinsic element of relational values was constituted by: an attitude of respect, attention to the relationship and practices of care. The instrumental element of relational values was constituted by: emotional and experiential contributions for the valuer, satisfaction and joy in the relationship, and practical contributions to the activities associated with the relationship (e.g. farm management). We further elaborate on the conditions required to sustain relational values, including physical, emotional and sociopolitical conditions. These results informed an elaborated conceptual framework of relational values, and environmental valuing more generally. While specifically derived from our dataset, we believe our conclusions could directly or in a modified form, apply to diverse cases of relational valuing. In sum, this paper offers a concrete step towards better characterizing, distinguishing and applying the relational values concept

    The moral landscape of biological conservation: Understanding conceptual and normative foundations

    Get PDF
    Biological conservation practices and approaches take many forms. Conservation projects do not only differ in their aims and methods, but also concerning their conceptual and normative background assumptions and their underlying motivations and objectives. We draw on philosophical distinctions from the ethics of conservation to explain variances of different positions on conservation projects along six dimensions: (1) conservation ideals, (2) intervention intuitions, (3) the moral considerability of nonhuman beings, (4) environmental values, (5) views on nature and (6) human roles in nature. The result is a map of the moral landscape of biological conservation, on which these six dimensions are layered. This map functions as a heuristic tool to understand conceptual and normative foundations of specific conservation projects, which we will illustrate with four paradigmatic examples: the Pisavaara Strict Nature Reserve, Predator Free New Zealand, the Oostvaardersplassen Nature Reserve and the Great Green Wall Project. With this map as a heuristic tool, we aim to conceptually illuminate disagreement and clarify misunderstandings between representatives of different environmental protection strategies and to show that the same project can be supported (or criticised) on different grounds

    The moral landscape of biological conservation: Understanding conceptual and normative foundations

    Get PDF
    Biological conservation practices and approaches take many forms. Conservation projects do not only differ in their aims and methods, but also concerning their conceptual and normative background assumptions and their underlying motivations and objectives. We draw on philosophical distinctions from the ethics of conservation to explain variances of different positions on conservation projects along six dimensions: (1) conservation ideals, (2) intervention intuitions, (3) the moral considerability of nonhuman beings, (4) environmental values, (5) views on nature and (6) human roles in nature. The result is a map of the moral landscape of biological conservation, on which these six dimensions are layered. This map functions as a heuristic tool to understand conceptual and normative foundations of specific conservation projects, which we will illustrate with four paradigmatic examples: the Pisavaara Strict Nature Reserve, Predator Free New Zealand, the Oostvaardersplassen Nature Reserve and the Great Green Wall Project. With this map as a heuristic tool, we aim to conceptually illuminate disagreement and clarify misunderstandings between representatives of different environmental protection strategies and to show that the same project can be supported (or criticised) on different grounds

    Gene drives: benefits, risks, and possible applications

    Full text link
    Gene drives are genetic elements in sexually reproducing organisms that skew the pattern of inheritance of a given characteristic. They can be used to spread a characteristic that can alter or even reduce the numbers of individuals in wild populations of a certain species. As they spread by being inherited from one generation to the next, they could persist in populations long-term. The spreading property of gene drives could be a source of great potential in areas as diverse as the control of disease vectors, invasive species, agricultural pests and predators of endangered species. However, the same property may make containment challenging and therefore may also pose novel envi- ronmental risks. The evaluation, distribution of risks and benefits and the fact that gene drives may be seen as a particularly profound interference with nature further raises novel ethical considerations

    How puzzles are shaping our understanding of biodiversity: A call for more research into biodiversity representation in educational games

    Full text link
    Games as a didactic tool (e. g., puzzles) are gaining recognition in environmental education to promote skill development, but also to develop a specific understanding of the natural world. However, a children’s puzzle containing representations of nature may unwillingly lead to “misconceptions” of biodiversity themes and processes, and an over-simplification of the relationship between people and nature. To solve this problem, positive connotations of biodiversity may prompt a conceptual change to a more nuanced, multifaceted conception of biodiversity

    Societal impact of synthetic biology: responsible research and innovation (RRI)

    Full text link
    Synthetic biology is an emerging field at the interface between biology and engineering, which has generated many expectations for beneficial biomedical and biotechnological applications. At the same time, however, it has also raised concerns about risks or the aim of producing new forms of living organisms. Researchers from different disciplines as well as policymakers and the general public have expressed the need for a form of technology assessment that not only deals with technical aspects, but also includes societal and ethical issues. A recent and very influential model of technology assessment that tries to implement these aims is known as RRI (Responsible Research and Innovation). In this paper, we introduce this model and its historical precursor strategies. Based on the societal and ethical issues which are presented in the current literature, we discuss challenges and opportunities of applying the RRI model for the assessment of synthetic biology
    corecore