34 research outputs found

    Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.

    Get PDF
    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development

    Toward interoperable bioscience data

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Genetics 44 (2012): 121-126, doi:10.1038/ng.1054.To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open 'data commoning' culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared 'Investigation-Study-Assay' framework to support that vision.The authors also acknowledge the following funding sources in particular: UK Biotechnology and Biological Sciences Research Council (BBSRC) BB/I000771/1 to S.-A.S. and A.T.; UK BBSRC BB/I025840/1 to S.-A.S.; UK BBSRC BB/I000917/1 to D.F.; EU CarcinoGENOMICS (PL037712) to J.K.; US National Institutes of Health (NIH) 1RC2CA148222-01 to W.H. and the HSCI; US MIRADA LTERS DEB-0717390 and Alfred P. Sloan Foundation (ICoMM) to L.A.-Z.; Swiss Federal Government through the Federal Office of Education and Science (FOES) to L.B. and I.X.; EU Innovative Medicines Initiative (IMI) Open PHACTS 115191 to C.T.E.; US Department of Energy (DOE) DE-AC02- 06CH11357 and Arthur P. Sloan Foundation (2011- 6-05) to J.G.; UK BBSRC SysMO-DB2 BB/I004637/1 and BBG0102181 to C.G.; UK BBSRC BB/I000933/1 to C.S. and J.L.G.; UK MRC UD99999906 to J.L.G.; US NIH R21 MH087336 (National Institute of Mental Health) and R00 GM079953 (National Institute of General Medical Science) to A.L.; NIH U54 HG006097 to J.C. and C.E.S.; Australian government through the National Collaborative Research Infrastructure Strategy (NCRIS); BIRN U24-RR025736 and BioScholar RO1-GM083871 to G.B. and the 2009 Super Science initiative to C.A.S

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Mechanisms Regulating Selective Gene Activation During the Innate Immune Response

    No full text
    The cells of the innate immune system are responsible for the first line of defense against foreign dangers. Recognition of pathogens results in the transcriptional upregulation of a stimulus-specific inflammatory gene program to counteract infection and initiate adaptive immune responses. An appropriate response is necessary to resolve infection, but excessive inflammation can damage host tissues and lead to inflammatory diseases. Therefore, it is critical to understand how inflammatory responses are selectively achieved in response to diverse stimuli. The dissertation describes two studies that attempt to better understand the regulatory mechanisms underlying selective gene activation in response to inflammatory stimuli. The first study explores how signaling pathways, transcription factors, and chromatin act in concert to shape the inflammatory gene program. Using genome-wide techniques to interrogate chromatin-associated RNA, insight was gained into the lipid A-induced transcriptional cascade in macrophages. A quantitative analysis of transcription factor binding combined with kinetic and expression data derived from loss-of-function mutant mouse strains have allowed us to identify co-regulated genes, particularly those regulated by NF-κB, interferon response factor-3, and serum response factor. Furthermore, subsets of co-regulated secondary response genes were found to play distinct roles in immunity, underscoring the diverse mechanisms underlying selective gene activation. This has revealed insight into the unique regulatory logic for each inflammatory gene, and serves as a framework for understanding selective gene activation in various physiological settings. The second study utilizes the findings from the first study to investigate the mechanisms of LPS tolerance. A global interrogation of the effects of LPS tolerance in macrophages revealed a broad downregulation of gene expression in the tolerant state. In addition, a large subset of inducible genes exhibited prolonged transcription even after the tolerizing dose of LPS was removed but before the second LPS treatment, which could be partially explained by the presence of other cytokines mediating their activation in the tolerant state. Furthermore, previously described negative regulators of LPS signal transduction were expressed at higher levels in tolerant macrophages, including those inhibiting signals proximal to the TLR4 receptor. Together, the framework for understanding the regulatory logic of selective gene activation that can be utilized to unravel the mechanisms underlying diverse inflammatory settings

    Clinicians' awareness of the Affordable Care Act mandate to provide comprehensive tobacco cessation treatment for pregnant women covered by Medicaid

    Get PDF
    The Affordable Care Act (ACA) requires states to provide tobacco-cessation services without cost-sharing for pregnant traditional Medicaid-beneficiaries effective October 2010. It is unknown the extent to which obstetricians–gynecologists are aware of the Medicaid tobacco-cessation benefit. We sought to examine the awareness of the Medicaid tobacco-cessation benefit in a national sample of obstetricians–gynecologists and assessed whether reimbursement would influence their tobacco cessation practice. In 2012, a survey was administered to a national stratified-random sample of obstetricians–gynecologists (n = 252) regarding awareness of the Medicaid tobacco-cessation benefit. Results were stratified by the percentage of pregnant Medicaid patients. Chi-squared tests (p < 0.05) were used to assess significant associations. Analyses were conducted in 2014. Eighty-three percent of respondents were unaware of the benefit. Lack of awareness increased as the percentage of pregnant Medicaid patients in their practices decreased (range = 71.9%–96.8%; P = 0.02). One-third (36.1%) of respondents serving pregnant Medicaid patients reported that reimbursement would influence them to increase their cessation services. Four out of five obstetricians–gynecologists surveyed in 2012 were unaware of the ACA provision that required states to provide tobacco cessation coverage for pregnant traditional Medicaid beneficiaries as of October 2010. Broad promotion of the Medicaid tobacco-cessation benefit could reduce treatment barriers

    Comparative Efficacies of Lipid-Complexed Amphotericin B and Liposomal Amphotericin B against Coccidioidal Meningitis in Rabbits▿

    No full text
    In separate previous studies, we have shown that lipid-complexed amphotericin B (Abelcet [ABLC]) and liposomal amphotericin B (AmBisome [AmBi]) are efficacious against coccidioidal meningitis in rabbits. Here, we compared ABLC and AmBi directly in a coccidioidal meningitis model. Male New Zealand White rabbits were infected with 5 × 104 Coccidioides posadasii arthroconidia by direct cisternal puncture. Therapy with intravenous ABLC or AmBi at 7.5 or 15 mg/kg of body weight or sterile 5% dextrose water (D5W) began 5 days later. Clinical assessments were done daily; cerebrospinal fluid and blood samples were obtained on day 15 and upon euthanasia. Survivors to day 25 were euthanatized, the numbers of CFU in their tissues were determined, and histology analyses of the brains and spinal cords were done. Controls showed progressive disease, whereas animals treated with either dose of either drug showed few clinical signs of infection. All ABLC- or AmBi-treated rabbits survived, whereas eight of nine D5W-treated rabbits were euthanatized before day 25 (P < 0.0001). Numbers of CFU in the brains and spinal cords of ABLC- or AmBi-treated animals were 100- to 10,000-fold lower than those in the corresponding tissues of D5W-treated animals (P < 0.0006 to 0.0001). However, only two or fewer given a regimen of ABLC or AmBi were cured of infection in both tissues. Fewer ABLC-treated rabbits (four of eight treated with 7.5 mg/kg and five of eight treated with 15 mg/kg) than controls (nine of nine) had meningitis at any level of severity (P, 0.015 or 0.043 for animals treated with ABLC at 7.5 or 15 mg/kg, respectively). Although groups of rabbits treated with AmBi regimens did not have significantly fewer animals with meningitis than the control group (P > 0.05), ABLC and AmBi were not significantly different. In this model, intravenous ABLC and AmBi were similarly highly effective, with few clinical signs of infection, 100% survival, and significantly reduced fungal burdens among treated animals. There appeared to be little benefit in using the 15-mg/kg dosage of either formulation. There was no significant advantage of one drug over the other for this indication. Further studies are required to determine the lowest effective doses of these formulations

    Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.

    No full text
    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development
    corecore