210 research outputs found

    A STUDY OF THE STATISTICAL PROPERTIES OF TWO MEASURES OF COMPETITION

    Get PDF
    In competition studies, two species are studied, generally in ratios of 1:0, 3:1, 1:1, 1:3,and 0: 1. The standard measure of competition is the Relative Crowding Coefficient (RCC)..

    RNA-seq: technical variability and sampling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA-seq is revolutionizing the way we study transcriptomes. mRNA can be surveyed without prior knowledge of gene transcripts. Alternative splicing of transcript isoforms and the identification of previously unknown exons are being reported. Initial reports of differences in exon usage, and splicing between samples as well as quantitative differences among samples are beginning to surface. Biological variation has been reported to be larger than technical variation. In addition, technical variation has been reported to be in line with expectations due to random sampling. However, strategies for dealing with technical variation will differ depending on the magnitude. The size of technical variance, and the role of sampling are examined in this manuscript.</p> <p>Results</p> <p>In this study three independent Solexa/Illumina experiments containing technical replicates are analyzed. When coverage is low, large disagreements between technical replicates are apparent. Exon detection between technical replicates is highly variable when the coverage is less than 5 reads per nucleotide and estimates of gene expression are more likely to disagree when coverage is low. Although large disagreements in the estimates of expression are observed at all levels of coverage.</p> <p>Conclusions</p> <p>Technical variability is too high to ignore. Technical variability results in inconsistent detection of exons at low levels of coverage. Further, the estimate of the relative abundance of a transcript can substantially disagree, even when coverage levels are high. This may be due to the low sampling fraction and if so, it will persist as an issue needing to be addressed in experimental design even as the next wave of technology produces larger numbers of reads. We provide practical recommendations for dealing with the technical variability, without dramatic cost increases.</p

    Discovery of ovarian cancer biomarkers in serum using NanoLC electrospray ionization TOF and FT-ICR mass spectrometry

    Get PDF
    Abstract. Treatment of cancer patients is greatly facilitated by detection of the cancer prior to metastasis. One of the obstacles to early cancer detection is the lack of availability of biomarkers with sufficient specificity. With modern differential proteomic techniques, the potential exists to identify high specificity cancer biomarkers. We have delineated a set of protocols for the isolation and identification of serum biomarkers for ovarian cancer that exist in the low molecular weight serum fraction. After isolation of the low molecular weight fraction by ultrafiltration, the potential biomarkers are separated by reversed phase nano liquid chromatography. Detection via TOF or FT-ICR yields a data set for each sample. We compared stage III/IV ovarian cancer serum with postmenopausal age-matched controls. Using bioinformatics tools developed at Mayo, we normalized each sample for intensity and chromatographic alignment. Normalized data sets are subsequently compared and potential biomarkers identified. Several candidate biomarkers were found. One of these contains the sequence of fibrinopeptide-A known to be elevated in many types of cancer including ovarian cancer. The protocols utilized will be examined and would be applicable to a wide variety of cancers or disease states

    3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ) and 3'-tag digital gene expression (DGE). In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC).</p> <p>Results</p> <p>Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays.</p> <p>Conclusion</p> <p>3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix) in detecting lower abundant transcripts.</p

    Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL® platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cDNA-mediated Annealing, extension, Selection and Ligation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panel<sup>v1 </sup>(1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.</p> <p>Methods</p> <p>Bland-Altman plots and Spearman correlations evaluated intra/inter-panel agreement of normalized expression values. Unequal-variance <it>t</it>-statistics tested for differences in expression levels between HER2 + and HER2 - tumors. Regulatory network analysis was performed using Metacore (GeneGo Inc., St. Joseph, MI).</p> <p>Results</p> <p>Technical replicate correlations ranged between 0.815-0.956 and 0.986-0.997 for the 1.5K and 24K panels, respectively. Inter-panel correlations of expression values for the common 498 genes across the two panels ranged between 0.485-0.573. Inter-panel correlations of expression values of 17 probes with base-pair sequence matches between the 1.5K and 24K panels ranged between 0.652-0.899. In both panels, <it>erythroblastic leukemia viral oncogene homolog 2 </it>(<it>ERBB2</it>) was the most differentially expressed gene between the HER2 + and HER2 - tumors and seven additional genes had p-values < 0.05 and log2 -fold changes > |0.5| in expression between HER2 + and HER2 - tumors: <it>topoisomerase II alpha </it>(<it>TOP2A</it>), <it>cyclin a2 </it>(<it>CCNA2</it>), <it>v-fos fbj murine osteosarcoma viral oncogene homolog </it>(<it>FOS</it>), <it>wingless-type mmtv integration site family, member 5a </it>(<it>WNT5A</it>), <it>growth factor receptor-bound protein </it><it>7 </it>(<it>GRB7</it>), <it>cell division cycle 2 </it>(<it>CDC2</it>), <it>and baculoviral iap repeat-containing protein 5 </it>(<it>BIRC5</it>). The top 52 discriminating probes from the 24K panel are enriched with genes belonging to the regulatory networks centered around <it>v-myc avian myelocytomatosis viral oncogene homolog </it>(<it>MYC</it>), <it>tumor protein p53 </it>(<it>TP53</it>), and <it>estrogen receptor α </it>(<it>ESR1</it>). Network analysis with a two-step extension also showed that the eight discriminating genes common to the 1.5K and 24K panels are functionally linked together through <it>MYC</it>, <it>TP53</it>, and <it>ESR1</it>.</p> <p>Conclusions</p> <p>The relative RNA abundance obtained from two highly differing density gene panels are correlated with eight common genes differentiating HER2 + and HER2 - breast tumors. Network analyses demonstrated biological consistency between the 1.5K and 24K gene panels.</p

    Genome-Wide Transcriptional Profiling Reveals MicroRNA-Correlated Genes and Biological Processes in Human Lymphoblastoid Cell Lines

    Get PDF
    Expression level of many genes shows abundant natural variation in human populations. The variations in gene expression are believed to contribute to phenotypic differences. Emerging evidence has shown that microRNAs (miRNAs) are one of the key regulators of gene expression. However, past studies have focused on the miRNA target genes and used loss- or gain-of-function approach that may not reflect natural association between miRNA and mRNAs.To examine miRNA regulatory effect on global gene expression under endogenous condition, we performed pair-wise correlation coefficient analysis on expression levels of 366 miRNAs and 14,174 messenger RNAs (mRNAs) in 90 immortalized lymphoblastoid cell lines, and observed significant correlations between the two species of RNA transcripts. We identified a total of 7,207 significantly correlated miRNA-mRNA pairs (false discovery rate q<0.01). Of those, 4,085 pairs showed positive correlations while 3,122 pairs showed negative correlations. Gene ontology analyses on the miRNA-correlated genes revealed significant enrichments in several biological processes related to cell cycle, cell communication and signal transduction. Individually, each of three miRNAs (miR-331, -98 and -33b) demonstrated significant correlation with the genes in cell cycle-related biological processes, which is consistent with important role of miRNAs in cell cycle regulation.This study demonstrates feasibility of using naturally expressed transcript profiles to identify endogenous correlation between miRNA and miRNA. By applying this genome-wide approach, we have identified thousands of miRNA-correlated genes and revealed potential role of miRNAs in several important cellular functions. The study results along with accompanying data sets will provide a wealth of high-throughput data to further evaluate the miRNA-regulated genes and eventually in phenotypic variations of human populations

    Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice

    Get PDF
    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible

    Statistical Design for Biospecimen Cohort Size in Proteomics-based Biomarker Discovery and Verification Studies

    Get PDF
    Protein biomarkers are needed to deepen our understanding of cancer biology and to improve our ability to diagnose, monitor and treat cancers. Important analytical and clinical hurdles must be overcome to allow the most promising protein biomarker candidates to advance into clinical validation studies. Although contemporary proteomics technologies support the measurement of large numbers of proteins in individual clinical specimens, sample throughput remains comparatively low. This problem is amplified in typical clinical proteomics research studies, which routinely suffer from a lack of proper experimental design, resulting in analysis of too few biospecimens to achieve adequate statistical power at each stage of a biomarker pipeline. To address this critical shortcoming, a joint workshop was held by the National Cancer Institute (NCI), National Heart, Lung and Blood Institute (NHLBI), and American Association for Clinical Chemistry (AACC), with participation from the U.S. Food and Drug Administration (FDA). An important output from the workshop was a statistical framework for the design of biomarker discovery and verification studies. Herein, we describe the use of quantitative clinical judgments to set statistical criteria for clinical relevance, and the development of an approach to calculate biospecimen sample size for proteomic studies in discovery and verification stages prior to clinical validation stage. This represents a first step towards building a consensus on quantitative criteria for statistical design of proteomics biomarker discovery and verification research

    Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.</p> <p>Methods</p> <p>To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.</p> <p>Results</p> <p>Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.</p> <p>Conclusion</p> <p>Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.</p
    • …
    corecore