6 research outputs found

    Cyclin T1 stabilizes expression levels of HIV-1 Tat in cells

    Full text link
    Transcription from HIV-1 proviral DNA is a rate-determining step for HIV-1 replication. Interaction between the cyclin T1 (CycT1) subunit of positive transcription elongation factor b (P-TEFb) and the Tat transactivator protein of HIV-1 is crucial for viral transcription. CycT1 also interacts directly with the transactivation-responsive element (TAR) located on the 5′end of viral mRNA, as well as with Tat through the Tat–TAR recognition motif (TRM). These molecular interactions represent a critical step for stimulation of HIV transcription. Thus, Tat and CycT1 are considered to be feasible targets for the development of novel anti-HIV therapies. In this study, we demonstrate that CycT1 is positively involved in the Tat protein stability. Selective degradation of CycT1 by small interfering RNA (siRNA) culminated in proteasome-mediated degradation of Tat and eventual inhibition of HIV-1 gene expression. We noted that the siRNA-mediated knockdown of CycT1 could inhibit HIV-1 transcription without affecting cell viability and Tat mRNA levels. These findings clearly indicate that CycT1 is a feasible therapeutic target, and inactivation or depletion of CycT1 should effectively inhibit HIV replication by destabilizing Tat and suppressing Tat-mediated HIV transcription.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78606/1/j.1742-4658.2009.07424.x.pd

    Leptospirosis in the Asia Pacific region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leptospirosis is a worldwide zoonotic infection that has been recognized for decades, but the problem of the disease has not been fully addressed, particularly in resource-poor, developing countries, where the major burden of the disease occurs. This paper presents an overview of the current situation of leptospirosis in the region. It describes the current trends in the epidemiology of leptospirosis, the existing surveillance systems, and presents the existing prevention and control programs in the Asia Pacific region.</p> <p>Methods</p> <p>Data on leptospirosis in each member country were sought from official national organizations, international public health organizations, online articles and the scientific literature. Papers were reviewed and relevant data were extracted.</p> <p>Results</p> <p>Leptospirosis is highly prevalent in the Asia Pacific region. Infections in developed countries arise mainly from occupational exposure, travel to endemic areas, recreational activities, or importation of domestic and wild animals, whereas outbreaks in developing countries are most frequently related to normal daily activities, over-crowding, poor sanitation and climatic conditions.</p> <p>Conclusion</p> <p>In the Asia Pacific region, predominantly in developing countries, leptospirosis is largely a water-borne disease. Unless interventions to minimize exposure are aggressively implemented, the current global climate change will further aggravate the extent of the disease problem. Although trends indicate successful control of leptospirosis in some areas, there is no clear evidence that the disease has decreased in the last decade. The efficiency of surveillance systems and data collection varies significantly among the countries and areas within the region, leading to incomplete information in some instances. Thus, an accurate reflection of the true burden of the disease remains unknown.</p

    MicroRNAs in HIV-1 infection: an integration of viral and cellular interaction at the genomic level

    Get PDF
    The microRNA pathways govern complex interactions of the host and virus at the transcripts level that regulate cellular responses, viral replication and viral pathogenesis. As a group of single-stranded short non-coding ribonucleotides (ncRNAs), the microRNAs complement their messenger RNA (mRNA) targets to effect post-transcriptional or translational gene silencing. Previous studies showed the ability of human immunodeficiency virus 1 (HIV-1) to encode microRNAs which modify cellular defence mechanisms thus creating an environment favourable for viral invasion and replication. In corollary, cellular microRNAs were linked to the alteration of HIV-1 infection at different stages of replication and latency. As evidences further establish the regulatory involvement of both cellular and viral microRNA in HIV-1-host interactions, there is a necessity to organize this information. This paper would present current and emerging knowledge on these multi-dimensional interactions that may facilitate the design of microRNAs as effective antiretroviral reagents

    Inhibition of Human Immunodeficiency Virus Type 1 Replication in Latently Infected Cells by a Novel IκB Kinase Inhibitor

    No full text
    In human immunodeficiency virus type 1 (HIV-1) latently infected cells, NF-κB plays a major role in the transcriptional induction of HIV-1 replication. Hence, downregulation of NF-κB activation has long been sought for effective anti-HIV therapy. Tumor necrosis factor alpha (TNF-α) stimulates IκB kinase (IKK) complex, a critical regulator in the NF-κB signaling pathway. A novel IKK inhibitor, ACHP {2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl-nicotinonitrile}, was developed and evaluated as a potent and specific inhibitor for IKK-α and IKK-β. In this study, we examined the ability of this compound to inhibit HIV-1 replication in OM10.1 cells latently infected with HIV. When these cells were pretreated with ACHP, TNF-α-induced HIV-1 replication was dramatically inhibited, as measured by the HIV p24 antigen levels in the culture supernatants. Its 50% effective concentration was approximately 0.56 μM, whereas its 50% cytotoxic concentration was about 15 μM. Western blot analysis revealed inhibition of IκBα phosphorylation, IκBα degradation, p65 nuclear translocation, and p65 phosphorylation. ACHP was also found to suppress HIV-1 long terminal repeat (LTR)-driven gene expression through the inhibition of NF-κB activation. Furthermore, ACHP inhibited TNF-α-induced NF-κB (p65) recruitment to the HIV-1 LTR, as assessed by chromatin immunoprecipitation assay. These findings suggest that ACHP acts as a potent suppressor of TNF-α-induced HIV replication in latently infected cells and that this inhibition is mediated through suppression of IKK activity
    corecore