5 research outputs found
Long-Term Programming of Antigen-Specific Immunity from Gene Expression Signatures in the PBMC of Rhesus Macaques Immunized with an SIV DNA Vaccine
While HIV-1-specific cellular immunity is thought to be critical for the suppression of viral replication, the correlates of protection have not yet been determined. Rhesus macaques (RM) are an important animal model for the study and development of vaccines against HIV/AIDS. Our laboratory has helped to develop and study DNA-based vaccines in which recent technological advances, including genetic optimization and in vivo electroporation (EP), have helped to dramatically boost their immunogenicity. In this study, RMs were immunized with a DNA vaccine including individual plasmids encoding SIV gag, env, and pol alone, or in combination with a molecular adjuvant, plasmid DNA expressing the chemokine ligand 5 (RANTES), followed by EP. Along with standard immunological assays, flow-based activation analysis without ex vivo restimulation and high-throughput gene expression analysis was performed. Strong cellular immunity was induced by vaccination which was supported by all assays including PBMC microarray analysis that identified the up-regulation of 563 gene sequences including those involved in interferon signaling. Furthermore, 699 gene sequences were differentially regulated in these groups at peak viremia following SIVmac251 challenge. We observed that the RANTES-adjuvanted animals were significantly better at suppressing viral replication during chronic infection and exhibited a distinct pattern of gene expression which included immune cell-trafficking and cell cycle genes. Furthermore, a greater percentage of vaccine-induced central memory CD8+ T-cells capable of an activated phenotype were detected in these animals as measured by activation analysis. Thus, co-immunization with the RANTES molecular adjuvant followed by EP led to the generation of cellular immunity that was transcriptionally distinct and had a greater protective efficacy than its DNA alone counterpart. Furthermore, activation analysis and high-throughput gene expression data may provide better insight into mechanisms of viral control than may be observed using standard immunological assays
Long-term stability of clinical-grade lentiviral vectors for cell therapy
The use of lentiviral vectors in cell and gene therapy is steadily increasing, both in commercial and investigational therapies. Although existing data increasingly support the usefulness and safety of clinical-grade lentiviral vectors used in cell manufacturing, comprehensive studies specifically addressing their long-term stability are currently lacking. This is significant considering the high cost of producing and testing GMP-grade vectors, the limited number of production facilities, and lengthy queue for production slots. Therefore, an extended shelf life is a critical attribute to justify the investment in large vector lots for investigational cell therapies. This study offers a thorough examination of essential stability attributes, including vector titer, transduction efficiency, and potency for a series of clinical-grade vector lots, each assessed at a minimum of 36 months following their date of manufacture. The 13 vector lots included in this study were used for cell product manufacturing in 16 different clinical trials, and at the time of the analysis had a maximum storage time at −80°C of up to 8 years. The results emphasize the long-term durability and efficacy of GMP-grade lentiviral vectors for use in ex vivo cell therapy manufacturing