14 research outputs found

    Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction

    Get PDF
    We gratefully acknowledge our Amish liaisons and field workers and the extraordinary cooperation and support of the Amish community, without which these studies would not have been possible. We also acknowledge Dr. Alan Shuldiner for his impactful insights and guidance.Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease.Yeshttp://www.plosone.org/static/editorial#pee

    A Genome-Wide Association Study of Idiopathic Dilated Cardiomyopathy in African Americans

    Get PDF
    Idiopathic dilated cardiomyopathy (IDC) is the most common form of non-ischemic chronic heart failure. Despite the higher prevalence of IDC in African Americans, the genetics of IDC have been relatively understudied in this ethnic group. We performed a genome-wide association study to identify susceptibility genes for IDC in African Americans recruited from five sites in the U.S. (662 unrelated cases and 1167 controls). The heritability of IDC was calculated to be 33% (95% confidence interval: 19–47%; p = 6.4 × 10−7). We detected association of a variant in a novel intronic locus in the CACNB4 gene meeting genome-wide levels of significance (p = 4.1 × 10−8). The CACNB4 gene encodes a calcium channel subunit expressed in the heart that is important for cardiac muscle contraction. This variant has not previously been associated with IDC in any racial group. Pathway analysis, based on the 1000 genes most strongly associated with IDC, showed an enrichment for genes related to calcium signaling, growth factor signaling, neuronal/neuromuscular signaling, and various types of cellular level signaling, including gap junction and cAMP signaling. Our results suggest a novel locus for IDC in African Americans and provide additional insights into the genetic architecture and etiology

    The Impact of <i>PEAR1</i> rs12041331 on Endothelial Cell Migration in Human Umbilical Vein Endothelial Cells (HUVECs).

    No full text
    <p>(A) Representative phase-contrast images of rs12041331-stratified HUVECs at 0 and 6 hours post-scratch generation during an <i>ex vivo</i> endothelial cell migration assay. Scale bar, 250 μm. (B) Quantitative depiction of mean HUVEC migration. Endothelial cell migration distance was calculated by dividing the area of the scratch by the height of the frame using ImageJ. Mean endothelial cell migration distance was calculated based on 72, 72, and 36 independent measurements for GG, GA, and AA genotypes, respectively, as described in the Materials and Methods section.</p

    Predictors of Variance in Flow-Mediated Dilation in HAPI Study Participants.

    No full text
    <p>Abbreviations: BMI, body mass index; HAPI, Heredity and Phenotype Intervention; HDL, high-density lipoprotein; LDL, low-density lipoprotein.</p><p><sup>*</sup>Observed using a sex-stratified analysis to account for the OOA community’s male-only smoking cohort.</p><p>Predictors of Variance in Flow-Mediated Dilation in HAPI Study Participants.</p

    Characteristics of HAPI Heart Study Participants.

    No full text
    <p>Abbreviations: BMI, body mass index; HAPI, Heredity and Phenotype Intervention; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SD, standard deviation.</p><p>SI conversion factors: To convert HDL-cholesterol, LDL-cholesterol, and total cholesterol values to mmol/L, multiply by 0.0259; triglycerides to mmol/L, multiply by 0.0113.</p><p><sup>*</sup>Defined as systolic blood pressure greater than 140 mm Hg or diastolic blood pressure greater than 90 mm Hg or taking prescription medication for previously diagnosed hypertension.</p><p><sup>†</sup>Logarithm-transformed for analysis and back-transformed for presentation.</p><p><sup>‡</sup>Defined as LDL-cholesterol greater than 160 mg/dl or taking prescription medication for previously diagnosed hypercholesterolemia.</p><p><sup>§</sup>Self-reported history of smoking cigarette, pipe, or cigar. Only men report smoking in the OOA community.</p><p>Characteristics of HAPI Heart Study Participants.</p

    <i>PEAR1</i> Genetic Network.

    No full text
    <p>Genes highly correlated with <i>PEAR1</i> (green nodes) were evaluated for protein-protein interactions (gray nodes) that were shared by at least 2 of the 30 genes analyzed. Green lines indicate a co-expression relationship; black lines indicate a physical protein-protein interaction. Genetic neighborhoods of similar pathway or function have been highlighted and labeled.</p

    Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation

    Get PDF
    Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men for six ectopic fat traits in European, African, Hispanic, and Chinese ancestry populations, with and without sex stratification. In total, 7 new loci were identified in association with ectopic fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P<5×10−8; FDR<1%). Functional analysis of these genes revealed that loss of function of both ATXN1 and UBE2E2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting a physiological role for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes impact adipocyte biology and how their perturbations contribute to systemic metabolic disease
    corecore