9 research outputs found

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    African Swine Fever in Mongolia: Course of the Epidemic and Applied Control Measures

    No full text
    African swine fever (ASF) is spreading rapidly in Asia and was confirmed in Mongolia on 10 January 2019. Following the outbreak confirmation, a state emergency committee was established with representation from municipal authorities and other relevant authorities including the General Authority for Veterinary Services, National Emergency Management Agency, General Agency for Specialized Inspection, and the Ministry of Environment and Tourism. The committee provided recommendations and coordinated closely with the State Central Veterinary Laboratory to ensure quick outbreak investigation and response. In addition to outbreak investigations, sampling took place at farms and food premises and suggests a link between the outbreaks and swill feeding practices among backyard pig farmers. Upon government request, the Food and Agriculture Organization of the United Nations (FAO) deployed an expert team to assist in identifying risk factors for the disease spread and provide recommendations as how to improve disease prevention and response. Following the control measures from the involved agencies, the epidemic was successfully controlled and declared over on 11 April 2019. In total, the epidemic affected 83 pig farming households and led to a total of 2862 dead or culled pigs in eleven districts of seven provinces in Mongolia

    Assessing potential pathogenicity of novel highly pathogenic avian influenza (H5N6) viruses isolated from Mongolian wild duck feces using a mouse model

    No full text
    Several novel highly pathogenic avian influenza (HPAIVs) A(H5N6) viruses were reported in Mongolia in 2020, some of which included host-specific markers associated with mammalian infection. However, their pathogenicity has not yet been investigated. Here, we isolated and evaluate two novel genotypes of A(H5N6) subtype in Mongolia during 2018-2019 (A/wildDuck/MN/H5N6/2018-19). Their evolution pattern and molecular characteristics were evaluated using gene sequencing and their pathogenicity was determined using a mouse model. We also compared their antigenicity with previous H5 Clade 2.3.4.4 human isolates by cross-hemagglutination inhibition (HI). Our data suggests that A/wildDuck/MN/H5N6/2018-19 belongs to clade 2.3.4.4h, and maintains several residues associated with mammal adaptation. In addition, our evaluations revealed that their isolates are less virulent in mice than the previously identified H5 human isolates. However, their antigenicity is distinct from other HPAIVs H5 clade 2.3.4.4, thus supporting their continued evaluation as potential infection risks and the preparation of novel candidate vaccines for their neutralization.N

    SARS-CoV-2 Infection in Beaver Farm, Mongolia, 2021

    No full text
    We report an outbreak of COVID-19 in a beaver farm in Mongolia in 2021. Genomic characterization revealed a unique combination of mutations in the SARS-CoV-2 of the infected beavers. Based on these findings, increased surveillance of farmed beavers should be encouraged

    Genetic and antigenic characterization of H5 and H7 avian influenza viruses isolated from migratory waterfowl in Mongolia from 2017 to 2019

    Get PDF
    The circulation of highly pathogenic avian influenza viruses (HPAIVs) of various subtypes (e.g., H5N1, H5N6, H5N8, and H7N9) in poultry remains a global concern for animal and public health. Migratory waterfowls play important roles in the transmission of these viruses across countries. To monitor virus spread by wild birds, active surveillance for avian influenza in migratory waterfowl was conducted in Mongolia from 2015 to 2019. In total, 5000 fecal samples were collected from lakesides in central Mongolia, and 167 influenza A viruses were isolated. Two H5N3, four H7N3, and two H7N7 viruses were characterized in this study. The amino acid sequence at hemagglutinin (HA) cleavage site of those isolates suggested low pathogenicity in chickens. Phylogenetic analysis revealed that all H5 and H7 viruses were closely related to recent H5 and H7 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds in Asia and Europe. Antigenicity of H7Nx was similar to those of typical non-pathogenic avian influenza viruses (AIVs). While HPAIVs or A/Anhui/1/2013 (H7N9)-related LPAIVs were not detected in migratory waterfowl in Mongolia, sporadic introductions of AIVs including H5 and H7 viruses into Mongolia through the wild bird migration were identified. Thus, continued monitoring of H5 and H7 AIVs in both domestic and wild birds is needed for the early detection of HPAIVs spread into the country

    Comparison of the Whole-Genome Sequence of the African Swine Fever Virus from a Mongolian Wild Boar with Genotype II Viruses from Asia and Europe

    No full text
    African swine fever (ASF) is a highly contagious and severe viral hemorrhagic disease in domestic and wild pigs. ASF seriously affects the global swine industry as the mortality rate can reach 100% with highly virulent strains. In 2007, ASF was introduced into the Caucasus and spread to Russia and later into other European and Asian countries. This study reported the first whole-genome sequence (WGS) of the ASF virus (ASFV) that was detected in a Mongolian wild boar. This sequence was then compared to other WGS samples from Asia and Europe. Results show that the ASFV Genotype II from Mongolia is similar to the Asian Genotype II WGS. However, there were three nucleotide differences found between the Asian and European genome sequences, two of which were non-synonymous. It was also observed that the European Genotype II ASFV WGS was more diverse than that of the Asian counterparts. The study demonstrates that the ASFV Genotype II variants found in wild boars and domestic pigs are highly similar, suggesting these animals might have had direct or indirect contact, potentially through outdoor animal breeding. In conclusion, this study provides a WGS and mutation spectrum of the ASFV Genotype II WGS in Asia and Europe and thus provides important insights into the origin and spread of ASFV in Mongolia

    Molecular identification and risk factor analysis of the first Lumpy skin disease outbreak in cattle in Mongolia

    No full text
    Lumpy skin disease (LSD) is a transboundary viral infectious disease in cattle caused by a Capripoxvirus. LSD has been recently introduced in some Asian countries. However, in Mongolia, no report of LSD is publicly available. We clinically examined LSD symptoms in 1,034 cattle from 4 soum (district) in Dornod province in Mongolia. Sixty-one cattle of them were confirmed with symptoms of LSD and then viral P32 gene was detected by a PCR. The overall prevalence of LSD in cattle was 5.9%. Females odds ratios (OR)=2.27 than males, adults (>2.5-years-old, OR=3.68) than young (1-2.5-years-old) and calves (<1-year-old) were at higher risks for LSD cases in Mongolia, while locations near the tube well and pond water are major risk areas for viral transmission due to density of insects often is high. For virus isolation, skin nodule tissue samples of 4 cattle located in four distinct soums were used for viral propagation using the MDBK cell line. Internal terminal repeat region and RPO30 gene of 4 Mongolian isolates were amplified and sequenced. In the phylogenetic trees, Mongolian LSDVs (2021) were clustered together with the Chinese (2020) and Vietnamese isolates (2020). This is the first report alarming the LSD outbreak in Mongolia that was confirmed by our study. The newly isolated viruses would be a useful base for developing diagnostic tools and inactivated vaccine technology. A large-scale study of LSD is next priority for establishing successful control strategy of further disease outbreak
    corecore