47 research outputs found

    Artificial Shear Stress Effects on Leukocytes at a Biomaterial Interface

    Get PDF
    Medical devices, such as ventricular assist devices (VADs), introduce both foreign materials and artificial shear stress to the circulatory system. The effects these have on leukocytes and the immune response are not well understood. Understanding how these two elements combine to affect leukocytes may reveal why some patients are susceptible to recurrent device-related infections and provide insight into the development of pump thrombosis. Biomaterials - DLC: diamond-like carbon coated stainless steel; Sap: single-crystal sapphire; and Ti: titanium alloy (Ti6Al4V) were attached to the parallel plates of a rheometer. Whole human blood was left between the two discs for 5 min at +37°C with or without the application of shear stress (0s-1 or 1000s-1). Blood was removed and used for: complete blood cell counts; flow cytometry (leukocyte activation; cell death; microparticle generation; phagocytic ability; and reactive oxygen species (ROS) production); and the production of pro-inflammatory cytokines. L-selectin expression on monocytes was decreased when blood was exposed to the biomaterials both with and without shear. Applying shear stress to blood on a Sap and Ti surface led to activation of neutrophils shown as decreased L-selectin expression. Sap and Ti blunted the LPS-stimulated macrophage migration inhibitory factor (MIF) production, most notably when sheared on Ti.The biomaterials used here have been shown to activate leukocytes in a static environment. The introduction of shear appears to exacerbate this activation. Interestingly, a widely accepted biocompatible material (Ti) utilised in many different types of devices, has the capacity for immune cell activation and inhibition of MIF secretion when combined with shear stress. These findings contribute to our understanding of the contribution of biomaterials and shear stress to recurrent infections and vulnerability to sepsis in some VAD patients as well as pump thrombosis

    Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction

    Get PDF
    Congestive heart failure developing after acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Clinical trials of cell-based therapy after AMI evidenced only a moderate benefit. We could show previously that suspensions of apoptotic peripheral blood mononuclear cells (PBMC) are able to reduce myocardial damage in a rat model of AMI. Here we experimentally examined the biochemical mechanisms involved in preventing ventricular remodelling and preserving cardiac function after AMI. Cell suspensions of apoptotic cells were injected intravenously or intramyocardially after experimental AMI induced by coronary artery ligation in rats. Administration of cell culture medium or viable PBMC served as controls. Immunohistological analysis was performed to analyse the cellular infiltrate in the ischaemic myocardium. Cardiac function was quantified by echocardiography. Planimetry of the infarcted hearts showed a significant reduction of infarction size and an improvement of post AMI remodelling in rats treated with suspensions of apoptotic PBMC (injected either intravenously or intramoycardially). Moreover, these hearts evidenced enhanced homing of macrophages and cells staining positive for c-kit, FLK-1, IGF-I and FGF-2 as compared to controls. A major finding in this study further was that the ratio of elastic and collagenous fibres within the scar tissue was altered in a favourable fashion in rats injected with apoptotic cells. Intravenous or intramyocardial injection of apoptotic cell suspensions results in attenuation of myocardial remodelling after experimental AMI, preserves left ventricular function, increases homing of regenerative cells and alters the composition of cardiac scar tissue. The higher expression of elastic fibres provides passive energy to the cardiac scar tissue and results in prevention of ventricular remodelling

    Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study

    Get PDF
    Heart failure following acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Our previous observation that injection of apoptotic peripheral blood mononuclear cell (PBMC) suspensions was able to restore long-term cardiac function in a rat AMI model prompted us to study the effect of soluble factors derived from apoptotic PBMC on ventricular remodelling after AMI. Cell culture supernatants derived from irradiated apoptotic peripheral blood mononuclear cells (APOSEC) were collected and injected as a single dose intravenously after myocardial infarction in an experimental AMI rat model and in a porcine closed chest reperfused AMI model. Magnetic resonance imaging (MRI) and echocardiography were used to quantitate cardiac function. Analysis of soluble factors present in APOSEC was performed by enzyme-linked immunosorbent assay (ELISA) and activation of signalling cascades in human cardiomyocytes by APOSEC in vitro was studied by immunoblot analysis. Intravenous administration of a single dose of APOSEC resulted in a reduction of scar tissue formation in both AMI models. In the porcine reperfused AMI model, APOSEC led to higher values of ejection fraction (57.0 vs. 40.5%, p < 0.01), a better cardiac output (4.0 vs. 2.4 l/min, p < 0.001) and a reduced extent of infarction size (12.6 vs. 6.9%, p < 0.02) as determined by MRI. Exposure of primary human cardiac myocytes with APOSEC in vitro triggered the activation of pro-survival signalling-cascades (AKT, Erk1/2, CREB, c-Jun), increased anti-apoptotic gene products (Bcl-2, BAG1) and protected them from starvation-induced cell death. Intravenous infusion of culture supernatant of apoptotic PBMC attenuates myocardial remodelling in experimental AMI models. This effect is probably due to the activation of pro-survival signalling cascades in the affected cardiomyocytes

    Systemic Lipocalin-2 concentrations are increased in burn patients

    No full text
    corecore