25 research outputs found

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes

    Blood clot formation does not affect metastasis formation or tumor growth in a murine model of breast cancer.

    No full text
    Cancer is associated with increased fracture risk, due either to metastasis or associated osteoporosis. After a fracture, blood clots form. Because proteins of the coagulation cascade and activated platelets promote cancer development, a fracture in patients with cancer often raises the question whether it is a pathologic fracture or whether the fracture itself might promote the formation of metastatic lesions. We therefore examined whether blood clot formation results in increased metastasis in a murine model of experimental breast cancer metastasis. For this purpose, a clot was surgically induced in the bone marrow of the left tibia of immundeficient mice. Either one minute prior to or five minutes after clot induction, human cancer cells were introduced in the circulation by intracardiac injection. The number of cancer cells that homed to the intervention site was determined by quantitative real-time PCR and flow cytometry. Metastasis formation and longitudinal growth were evaluated by bioluminescence imaging. The number of cancer cells that homed to the intervention site after 24 hours was similar to the number of cells in the opposite tibia that did not undergo clot induction. This effect was confirmed using two more cancer cell lines. Furthermore, no difference in the number of macroscopic lesions or their growth could be detected. In the control group 72% developed a lesion in the left tibia. In the experimental groups with clot formation 79% and 65% developed lesions in the left tibia (p = ns when comparing each experimental group with the controls). Survival was similar too. In summary, the growth factors accumulating in a clot/hematoma are neither enough to promote cancer cell homing nor support growth in an experimental model of breast cancer bone metastasis. This suggests that blood clot formation, as occurs in traumatic fractures, surgical interventions, and bruises, does not increase the risk of metastasis formation

    Comparison of control and experimental groups.

    No full text
    <p>The number of macroscopic lesions detectable by bioluminescence imaging in the left tibia was similar between control animals that did not undergo clot induction and experimental animals with a blood clot in which cancer cells were injected 1 minute prior to (−1 min), or 5 minutes after clot induction (+5 min). Data from all mice (including those that already died) 7 weeks after cancer cell injection are shown. Data were analyzed using Fisher's exact test and no significant differences were detected in the CT/experimental group pairs.</p><p>*The percentage presented is calculated as follows: number of lesions at a specific site/total number of lesions in the group.</p

    Bone histomorphometry after clot induction.

    No full text
    <p>(A–B) After three days from the time of induction of a blood clot Masson-Goldner staining (on the left) and calcein labeling (on the right) showed no difference between control (CT) in panel A and hematoma induction in panel B in the same mouse. Neither osteoblast number (C), nor bone formation rate (D), nor osteoclast number (E), nor erosion surface (F) were different between the two tibiae. CT represents the right tibia without clot induction and hematoma represents the left tibia in which bone marrow was flushed and a blood clot was induced. Tibiae were obtained three days after clot induction in the left tibia, embedded in polymethylmethacrylate and stained using Masson-Goldner. n = 4 mice.</p

    Infiltration of blood clots by cancer cells.

    No full text
    <p>(A) Induction of a blood clot in the left tibia does not result in an increase in the number of infiltrating cancer cells compared to the right control tibia (CT) in the same mouse when cancer cells are injected 1 minute before blood clot induction using three cell lines (Breast cancer selected to home to the bone marrow: MDA-MB-231B/luc+; prostate cancer able to form bone metastases: PC3/luc+; and hepatoma cells not reported to form bone metastases: Huh-7). Cancer cells were injected 1 minute before clot induction. 24 hours later the bone marrow was isolated from the upper third of both tibiae and the number of cancer cells was evaluated by quantitative PCR of a cancer cell specific sequence and corrected to the total number of murine cells in the sample. n = 4–5/group. (B) The number of MDA cancer cells evaluated by flow cytometry was similar between the CT and hematoma group. MDA cancer cells were injected 1 minute before clot induction. 24 hours later the bone marrow was isolated from the upper third of both tibiae, red cells lysed, stained with a labeled human-specific CD49e (integrin α5) antibody and at least 3 million bone marrow cells were counted. n = 10 mice. (C) The use of surgical wax in the tibia following clot induction does not affect homing of cancer cells. 1 minute before clot induction MDA cancer cells were injected. The hole performed in the tibia in order to induce the blood clot in the bone marrow was either closed with surgical wax or left until bleeding stopped spontaneously (3–5 minutes) before closing the wound. n = 4 pairs. (D) Injection of MDA cancer cells 15 minutes before, 1 minute before and 5 minutes after clot induction did not affect the number of cancer cells in the bone marrow detected after 24 hours. Samples were prepared as in A. p = ns for each time point. (E) Evaluation of cancer cell numbers when injected 1 minute before clot induction did not reveal a difference in the number of cancer cells detected in the bone marrow at different time points (1, 4, 24 and 48 hours after clot induction). p = ns and n = 4–5 per time point. (F) Evaluation of cancer cell numbers when injected 5 minutes after clot induction showed a significant decrease in the number of cancer cells detected in the bone marrow at 1 hour after clot induction (p<0.05) but not at later time points (4, 24 and 48 hours after clot induction) (p = ns). n = 4–8 per time point.</p

    Induction of hematoma and clot formation in the bone marrow.

    No full text
    <p>(A) Induction of bleeding results in clot formation within 5 minutes as evidenced by Masson-Goldner staining. <i>Bar represents 500</i> µ<i>m</i>. The enlarged inset below shows the blood clot. <i>Bar represents 100</i> µ<i>m</i>. (B) The clot is still present, albeit partially reorganized at 24 hours after bleeding induction. <i>Bar represents 500</i> µ<i>m</i>. Enlarged inset is shown below. <i>Bar represents 100</i> µ<i>m</i>. (C) After 72 hours the clot resolved. (D) Thrombin staining of the bone shown in B confirms the presence of thrombin (in red) in the clot area. (E) Quantification of the change in hematoma size at different time points. After induction of bleeding in the bone marrow, mice were euthanized at the times mentioned, and tibiae examined. n = 3–4 mice/time point.</p
    corecore