17 research outputs found
Nanoparticulate Transport of Oximes over an In Vitro Blood-Brain Barrier Model
Background: Due to the use of organophosphates (OP) as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE) in the peripheral and central nervous systems (CNS). This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime). However, these oximes can not cross the blood-brain barrier (BBB) sufficiently. Therefore, new strategies are needed to transport oximes over the BBB. Methodology/Principal Findings: In this study, we combined different oximes (obidoxime dichloride and two different HI 6 salts, HI 6 dichloride monohydrate and HI 6 dimethanesulfonate) with human serum albumin nanoparticles and could show an oxime transport over an in vitro BBB model. In general, the nanoparticulate transported oximes achieved a better reactivation of OP-inhibited AChE than free oximes. Conclusions/Significance: With these nanoparticles, for the first time, a tool exists that could enable a transport of oximes over the BBB. This is very important for survival after severe OP intoxication. Therefore, these nanoparticulate formulation
Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model
Background: The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood.
Methodology/Principal Findings: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor.
Conclusions/Significance: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier
Elektronenmikroskopische Untersuchung des Transportmechanismus von nanopartikulären Arzneistoffträgersystemen über die Blut-Hirn-Schranke
Einleitung: Um die empfindlichen Nervenzellen des Gehirns vor den Einflüssen schädigender Substanzen im systemisch zirkulierenden Blut zu schützen, besitzen höhere Lebewesen einen Barrieremechanismus, der das zentrale Nervensystem (ZNS) nach außen hin abriegelt. Diese Blut-Hirn-Schranke (BHS) wird durch die Gefäßendothelzellen im Gehirn gebildet, die über eine Kombination mehrerer Mechanismen Substanzen vom Eindringen in das Gehirngewebe abhalten. Zum einen stellt die Existenz dieser Barriere einen lebensnotwendigen Schutz dar, zum anderen jedoch bedeutet sie eine große Hürde in der Pharmakotherapie von Erkrankungen des zentralen Nervensystems, da nur wenige Arzneimittel in der Lage sind sie zu überwinden. Eine gute Gehirngängigkeit besitzen in der Regel kleine Moleküle mit einer hohen Lipophilie oder solche, die aktiv über Transporter oder Rezeptoren in das ZNS aufgenommen werden. Alle anderen Substanzen, wie effektiv sie auch im restlichen Körper sein mögen, stehen für die Therapie zerebraler Krankheiten wie z.B. Epilepsie, Alzheimer, Gehirntumore oder ZNS-HIV unter normalen Umständen nicht zur Verfügung. Das Gebiet der kolloidalen Trägersysteme bietet eine Lösung für dieses Problem. Durch den Einsatz von Liposomen oder Nanopartikeln als „Carrier“ können verschiedene Arzneistoffe aktiv in das Gehirn transportiert warden, um dort ihre Wirkung zu entfalten. Des Weiteren führt ein solches „Drug targeting“ nicht nur zu einer Überwindung der BHS sondern gleichzeitig zu einer vermehrten Anreicherung des Arzneistoffs im ZNS und dadurch zu geringeren Nebenwirkungen im restlichen Organismus. Durch die erhöhte Selektivität für das ZNS können kleinere und somit für den Körper verträglichere Dosen des Arzneistoffs eingesetzt werden. In der Vergangenheit konnte gezeigt werden, dass unter anderem Nanopartikel aus humanem Serumalbumin, welche mit Polysorbat 80 überzogen waren oder deren Oberfläche mit Apolipoproteinen modifiziert wurde, Arzneistoffe, die üblicherweise nicht in der Lage sind die Blut-Hirn-Schranke zu überwinden, zentral zur Wirkung brachten. Der genaue Mechanismus, durch den diese Arzneistoffe mithilfe der Trägersysteme ins Gehirn gelangen,war bisher weitgehend ungeklärt. Ein Eindringen des arzneistoffbeladenen Nanopartikels als Ganzes in das Gehirn sowie die Einleitung 2 Vermittlung des Arzneistoff-Transportes durch das Partikel am Endothel oder gar eine unselektive Zerstörung der Barrierefunktion wurden diskutiert. Im Rahmen dieser Arbeit wurden mit Apolipoproteinen modifizierte Partikel aus humanem Serumalbumin hergestellt und hinsichtlich ihrer Größe, der Größenverteilung, des Partikelgehaltes, der Oberflächenladung und ihres morphologischen Erscheinungsbildes charakterisiert. Anschließend wurde die Interaktion dieser kolloidalen Trägersysteme mit isolierten Endothelzellen des Nagergehirns mittels verschiedener Analytiken untersucht. Gleichzeitig wurden in umfangreichen Untersuchungen an Mäusen und Ratten die Geschehnisse in vivo beleuchtet und mit Hilfe eines bildgebenden Verfahrens, der Elektronenmikroskopie, dargestellt. Des Weiteren wurde der Effekt einer nanopartikulären Applikation auf die Integrität der Barrierefunktion der BHS untersucht, wodurch eine schädliche Wirkung der Partikel ausgeschlossen und die der Aufnahme in das ZNS zugrunde liegenden Transportmechanismen aufgeklärt werden konnten
Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones
The blood-brain barrier (BBB) represents a considerable obstacle to brain entry of the majority of drugs and thus severely restricts the therapy of many serious CNS diseases including brain tumours, brain HIV, Alzheimer and other neurodegenerative diseases. The use of nanoparticles coated with polysorbate 80 or with attached apolipoprotein E has enabled the delivery of drugs across the BBB. However, the mechanism of this enhanced transport is still not fully understood. In this present study, human serum albumin nanoparticles, with covalently bound apolipoprotein E (Apo E) as a targetor as well as without apolipoprotein E, were manufactured and injected intravenously into SV 129 mice. The animals were sacrificed after 15 and 30 min, and their brains were examined by transmission electron microscopy. Only the nanoparticles with covalently bound apolipoprotein E were detected in brain capillary endothelial cells and neurones, whereas no uptake into the brain was detectable with nanoparticles without apolipoprotein E. We have also demonstrated uptake of the albumin/ApoE nanoparticles into mouse endothelial (b.End3) cells in vitro and their intracellular localisation. These findings indicate that nanoparticles with covalently bound apolipoprotein E are taken up into the cerebral endothelium by an endocytic mechanism followed by transcytosis into brain parenchyma
Long time measurement of transendothelial electrical resistance (TER) after nanoparticle addition.
<p>pBCEC were seeded on collagen IV-coated Transwell inserts and incubated with the free drug or 0.26 mg nanoparticles per cm<sup>2</sup> growth area of the ApoE-modified (NP-ApoE) as well as the PEGylated (NP-PEG) nanoparticulate formulations, which were loaded with 1000 µM of HI 6 dichloride monohydrate (HI 6-DCL) at 37°C by adding the nanoparticles into the upper/apical compartment of the Transwell system. The TER was measured automatically every hour by impedance measurement. A magnification of the area of interest is highlighted in the red quadrangle. As control the measurement of the TER of a Transwell insert without cells is shown.</p
Transport study of adsorptively HI 6 dimethanesulfonate-loaded nanoparticles on an <i>in vitro</i> BBB model.
<p>*Mann-Whitney U Test: significant difference between NP-ApoE and free HI 6-DMS (P<0.05).</p
Transport study of adsorptively obidoxime-loaded nanoparticles on an <i>in vitro</i> BBB model.
<p>Transport study of adsorptively obidoxime-loaded nanoparticles on an <i>in vitro</i> BBB model.</p
Measurement of transendothelial electrical resistance (TER) and the capacitance (C<sub>cl</sub>).
<p>pBCEC were seeded on collagen IV-coated Transwell inserts, which were placed in the cellZscope. The transendothelial electrical resistance (TER) and the capacitance (C<sub>cl</sub>) of the pBCEC were measured automatically every hour by impedance measurement. As control the measurement of the transendothelial electrical resistance (TER) of a Transwell insert without cells is shown.</p
Cellular uptake and intracellular distribution of the nanoparticles studied by CLSM.
<p>bEnd3 cells were cultured on collagen IV-coated glass slides and were treated with a) PEGylated HI 6 dichloride monohydrate-loaded nanoparticles or b) ApoE-modified HI 6 dichloride monohydrate-loaded nanoparticles for 4 h at 37°C. The green autofluorescence of the nanoparticles was used for detection. Red: cytosol stained with CellTracker™ Red CMTPX, blue: nucleus stained with DAPI. Pictures were taken within inner sections of the cells.</p