3 research outputs found

    Brain FDG PET for Short- to Medium-Term Prediction of Further Cognitive Decline and Need for Assisted Living in Acutely Hospitalized Geriatric Patients With Newly Detected Clinically Uncertain Cognitive Impairment

    No full text
    [Purpose ] The aim of this study was to evaluate brain FDG PET for short- to medium-term prediction of cognitive decline, need for assisted living, and survival in acutely hospitalized geriatric patients with newly detected clinically uncertain cognitive impairment (CUCI).[Materials and Methods ] The study included 96 patients (62 females, 81.4 ± 5.4 years) hospitalized due to (sub)acute admission indications with newly detected CUCI (German Clinical Trials Register DRKS00005041). FDG PET was categorized as “neurodegenerative” (DEG+) or “nonneurodegenerative” (DEG−) based on visual inspection by 2 independent readers. In addition, each individual PET was tested voxel-wise against healthy controls (P < 0.001 uncorrected). The resulting total hypometabolic volume (THV) served as reader-independent measure of the spatial extent of neuronal dysfunction/degeneration. FDG PET findings at baseline were tested for association with the change in living situation and change in vital status 12 to 24 months after PET. The association with the annual change of the CDR-SB (Clinical Dementia Rating Sum of Boxes) after PET was tested in a subsample of 72 patients.[Results ] The mean time between PET and follow-up did not differ between DEG+ and DEG− patients (1.37 ± 0.27 vs 1.41 ± 0.27 years, P = 0.539). Annual change of CDR-SB was higher in DEG+ compared with DEG− patients (2.78 ± 2.44 vs 0.99 ± 1.81, P = 0.001), and it was positively correlated with THV (age-corrected Spearman ρ = 0.392, P = 0.001). DEG+ patients moved from at home to assisted living significantly earlier than DEG− patients (P = 0.050). Survival was not associated with DEG status or with THV.[Conclusions ] In acutely hospitalized geriatric patients with newly detected CUCI, the brain FDG PET can contribute to the prediction of further cognitive/functional decline and the need for assisted living within 1 to 2 years.Peer reviewe

    Mental speed is associated with the shape irregularity of white matter MRI hyperintensity load

    No full text
    Brain MRI white matter hyperintensities (WMHs) are common in elderly subjects. Their impact on cognition, however, appears highly variable. Complementing conventional scoring of WMH load (volume and location) by quantitative characterization of the shape irregularity of WMHs might improve the understanding of the relationship between WMH load and cognitive performance. Here we propose the “confluency sum score” (COSU) as a marker of the total shape irregularity of WMHs in the brain. The study included two independent patient samples: 87 cognitively impaired geriatric inpatients from a prospective neuroimaging study (iDSS) and 198 subjects from the National Alzheimer’s Coordinating Center (NACC) database (132 with, 66 w/o cognitive impairment). After automatic segmentation and clustering of the WMHs on FLAIR (LST toolbox, SPM8), the confluency of the i-th contiguous WMH cluster was computed as confluencyi = [1/(36π)∙surfacei 3/volumei 2]1/3–1. The COSU was obtained by summing the confluency over all WMH clusters. COSU was tested for correlation with CERAD-plus subscores. Correlation analysis was restricted to subjects with at least moderate WMH load (≥ 13.5 ml; iDSS / NACC: n = 52 / 80). In the iDSS sample, among the 12 CERAD-plus subtests the trail making test A (TMT-A) was most strongly correlated with the COSU (Spearman rho = −0.345, p = 0.027). TMT-A performance was not associated with total WMH volume (rho = 0.147, p = 0.358). This finding was confirmed in the NACC sample (rho = −0.261, p = 0.023 versus rho = −0.040, p = 0.732). Cognitive performance in specific domains including mental speed and fluid abilities seems to be more strongly associated with the shape irregularity of white matter MRI hyperintensities than with their volume
    corecore