11 research outputs found

    The effects of microbiota abundance on symptom severity in Parkinson’s disease: A systematic review

    Get PDF
    IntroductionParkinson’s disease (PD) is neurodegenerative disease with a multifactorial etiopathogenesis with accumulating evidence identifying microbiota as a potential factor in the earliest, prodromal phases of the disease. Previous research has already shown a significant difference between gut microbiota composition in PD patients as opposed to healthy controls, with a growing number of studies correlating gut microbiota changes with the clinical presentation of the disease in later stages, through various motor and non-motor symptoms. Our aim in this systematic review is to compose and assess current knowledge in the field and determine if the findings could influence future clinical practice as well as therapy in PD.MethodsWe have conducted a systematic review according to PRISMA guidelines through MEDLINE and Embase databases, with studies being selected for inclusion via a set inclusion and exclusion criteria.Results20 studies were included in this systematic review according to the selected inclusion and exclusion criteria. The search yielded 18 case control studies, 1 case study, and 1 prospective case study with no controls. The total number of PD patients encompassed in the studies cited in this review is 1,511.ConclusionThe link between gut microbiota and neurodegeneration is a complex one and it depends on various factors. The relative abundance of various microbiota taxa in the gut has been consistently shown to have a correlation with motor and non-motor symptom severity. The answer could lie in the products of gut microbiota metabolism which have also been linked to PD. Further research is thus warranted in the field, with a focus on the metabolic function of gut microbiota in relation to motor and non-motor symptoms

    Characterization of a Novel Cutaneous Human Papillomavirus Genotype HPV-125

    Get PDF
    The DNA genome of a novel HPV genotype, HPV-125, isolated from a hand wart of an immuno-competent 19-year old male was fully cloned, sequenced and characterized. The full genome of HPV-125 is 7,809-bp in length with a GC content of 46.4%. By comparing the nucleotide sequence of the complete L1 gene, HPV-125 is phylogenetically placed within cutaneotrophic species 2 of Alphapapillomaviruses, and is most closely related to HPV-3 and HPV-28. HPV-125 has a typical genomic organization of Alphapapillomaviruses and contains genes coding for five early proteins, E6, E7, E1, E2 and E4 and two late capsid proteins, L1 and L2. The genome contains two non-coding regions: the first located between the L1 and E6 genes (nucleotide positions 7,137–7,809, length 673-bp) and the second between genes E2 and L2 (nucleotide positions 3,757–4,216, length 460-bp). The E6 protein of HPV-125 contains two regular zinc-binding domains at amino acid positions 29 and 102, whereas the E7 protein exhibits one such domain at position 50. HPV-125 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of HPV-125, a quantitative type-specific real-time PCR was developed. The 95% limit-of-detection of the assay was 2.5 copies per reaction (range 1.7–5.7) and the intra- and inter-assay coefficients of variation were 0.47 and 2.00 for 100 copies per reaction, and 1.15 and 2.15 for 10 copies per reaction, respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (a total of 601 samples) showed that HPV-125 is a relatively rare HPV genotype, with cutaneous tropism etiologically linked with sporadic cases of common warts

    Characterization of Novel Cutaneous Human Papillomavirus Genotypes HPV-150 and HPV-151

    Get PDF
    DNA from two novel HPV genotypes, HPV-150 and HPV-151, isolated from hair follicles of immuno-competent individuals, was fully cloned, sequenced and characterized. The complete genomes of HPV-150 and HPV-151 are 7,436-bp and 7,386-bp in length, respectively. Both contain genes for at least six proteins, namely E6, E7, E1, E2, L2, L1, as well as a non-coding upstream regulatory region located between the L1 and E6 genes: spanning 416-bp in HPV-150 (genomic positions 7,371 to 350) and 322-bp in HPV-151 (genomic positions 7,213 to 148). HPV-150 and HPV-151 are phylogenetically placed within the Betapapillomavirus genus and are most closely related to HPV-96 and HPV-22, respectively. As in other members of this genus, the intergenic E2-L2 region is very short and does not encode for an E5 gene. Both genotypes contain typical zinc binding domains in their E6 and E7 proteins, but HPV-151 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of the novel genotypes, quantitative type-specific real-time PCR assays were developed. The 95% detection limits of the HPV-150 and HPV-151 assays were 7.3 copies/reaction (range 5.6 to 11.4) and 3.4 copies/reaction (range 2.5 to 6.0), respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (total of 540 samples) revealed that HPV-150 and HPV-151 are relatively rare genotypes with a cutaneous tropism. Both genotypes were found in sporadic cases of common warts and SCC and BCC of the skin as single or multiple infections usually with low viral loads. HPV-150 can establish persistent infection of hair follicles in immuno-competent individuals. A partial L1 sequence of a putative novel HPV genotype, related to HPV-150, was identified in a squamous cell carcinoma of the skin obtained from a 64-year old immuno-compromised male patient

    Molecular characterization of candidate isolates of novel papillomavirus genotypes from Slovenia

    Full text link

    DNA Methylation Profiles in Whole Blood of Huntington's Disease Patients

    No full text
    Epigenetic mechanisms, especially DNA methylation, are suggested to play a role in the age-of-onset in Huntington's disease (HD) based on studies on patient brains, and cellular and animal models. Methylation is tissue-specific and it is not clear how HD specific methylation in the brain correlates with the blood compartment, which represents a much more clinically accessible sample. Therefore, we explored the presence of HD specific DNA methylation patterns in whole blood on a cohort of HDM and healthy controls from Slovenia. We compared CpG site-specific DNA methylation in whole blood of 11 symptomatic and 9 pre-symptomatic HDM (HDM), and 15 healthy controls, by using bisulfite converted DNA on the Infinium® Human Methylation27 BeadChip microarray (Illumina) covering 27,578 CpG sites and 14,495 genes. Of the examined 14,495 genes, 437 were differentially methylated (p < 0.01) in pre-symptomatic HDM compared to controls, with three genes (CLDN16, DDC, NXT2) retaining statistical significance after the correction for multiple testing (false discovery rate, FDR < 0.05). Comparisons between symptomatic HDM and controls, and the comparison of symptomatic and pre-symptomatic HDM further identified 260 and 198 differentially methylated genes (p < 0.01), respectively, whereas the comparison of all HDM (symptomatic and pre-symptomatic) and healthy controls identified 326 differentially methylated genes (p < 0.01), however, none of these changes retained significance (FDR < 0.05) after the correction for multiple testing. The results of our study suggest that methylation signatures in the blood compartment are not robust enough to prove as valuable biomarkers for predicting HD progression, but recognizable changes in methylation deserve further research

    Human Papillomavirus Genotype Specificity of Hybrid Capture 2 Low-Risk Probe Cocktailâ–ż

    No full text
    A genotyping study of 285 Hybrid Capture 2 low-risk probe cocktail-positive specimens showed cross-reactivity with several untargeted human papillomavirus genotypes. Cross-reactivity was often clinically beneficial due to the detection of untargeted low-risk genotypes. A total of 8.4% of positive results, usually weak, were due to cross-reactivity with high-risk genotypes. Establishment of a gray zone is recommended

    The effects of microbiota abundance on symptom severity in Parkinson’s disease: A systematic review

    No full text
    Introduction: Parkinson’s disease (PD) is neurodegenerative disease with a multifactorial etiopathogenesis with accumulating evidence identifying microbiota as a potential factor in the earliest, prodromal phases of the disease. Previous research has already shown a significant difference between gut microbiota composition in PD patients as opposed to healthy controls, with a growing number of studies correlating gut microbiota changes with the clinical presentation of the disease in later stages, through various motor and non-motor symptoms. Our aim in this systematic review is to compose and assess current knowledge in the field and determine if the findings could influence future clinical practice as well as therapy in PD. Methods: We have conducted a systematic review according to PRISMA guidelines through MEDLINE and Embase databases, with studies being selected for inclusion via a set inclusion and exclusion criteria. Results: 20 studies were included in this systematic review according to the selected inclusion and exclusion criteria. The search yielded 18 case control studies, 1 case study, and 1 prospective case study with no controls. The total number of PD patients encompassed in the studies cited in this review is 1,511. Conclusion: The link between gut microbiota and neurodegeneration is a complex one and it depends on various factors. The relative abundance of various microbiota taxa in the gut has been consistently shown to have a correlation with motor and non-motor symptom severity. The answer could lie in the products of gut microbiota metabolism which have also been linked to PD. Further research is thus warranted in the field, with a focus on the metabolic function of gut microbiota in relation to motor and non-motor symptom

    GiOPARK Project: The Genetic Study of Parkinson’s Disease in the Croatian Population

    No full text
    Parkinson’s disease is a neurological disorder that affects motor function, autonomic functions, and cognitive abilities. It is likely that both genetic and environmental factors, along with age, contribute to the cause. However, there is no comprehensive guideline for genetic testing for Parkinson’s disease, and more research is needed to understand genetic variations in different populations. There has been no research on the genetic background of Parkinson’s disease in Croatia so far. Therefore, with the GiOPARK project, we aimed to investigate the genetic variants responsible for Parkinson’s disease in 153 Croatian patients with early onset, familial onset, and sporadic late-onset using whole-exome sequencing, along with multiplex ligation-dependent probe amplification and Sanger sequencing in select patients. We found causative variants in 7.84% of the patients, with GBA being the most common gene (4.58%), followed by PRKN (1.96%), ITM2B (0.65%), and MAPT (0.65%). Moreover, variants of uncertain significance were identified in 26.14% of the patients. The causative variants were found in all three subgroups, indicating that genetic factors play a role in all the analyzed Parkinson’s disease subtypes. This study emphasizes the need for more inclusive research and improved guidelines to better understand the genetic basis of Parkinson’s disease and facilitate more effective clinical management

    A multicenter study of genetic testing for Parkinson’s disease in the clinical setting

    No full text
    Abstract Parkinson’s disease (PD) guidelines lack clear criteria for genetic evaluation. We assessed the yield and rationale of genetic testing for PD in a routine clinical setting on a multicenter cohort of 149 early-onset and familial patients by exome sequencing and semi-quantitative multiplex ligation-dependent probe amplification of evidence-based PD-associated gene panel. We show that genetic testing for PD should be considered for both early-onset and familial patients alike, and a clinical yield of about 10% in the Caucasian population can be expected
    corecore