40 research outputs found

    A Neuron-Specific Role for Autophagy in Antiviral Defense against Herpes Simplex Virus

    Get PDF
    SummaryType I interferons (IFNs) are considered to be the universal mechanism by which viral infections are controlled. However, many IFN-stimulated genes (ISGs) rely on antiviral pathways that are toxic to host cells, which may be detrimental in nonrenewable cell types, such as neurons. We show that dorsal root ganglionic (DRG) neurons produced little type I IFNs in response to infection with a neurotropic virus, herpes simplex type 1 (HSV-1). Further, type I IFN treatment failed to completely block HSV-1 replication or to induce IFN-primed cell death in neurons. We found that DRG neurons required autophagy to limit HSV-1 replication both in vivo and in vitro. In contrast, mucosal epithelial cells and other mitotic cells responded robustly to type I IFNs and did not require autophagy to control viral replication. These findings reveal a fundamental difference in the innate antiviral strategies employed by neurons and mitotic cells to control HSV-1 infection

    The changing landscape in epilepsy imaging: Unmasking subtle and unique entities

    Get PDF
    Dramatic changes have occurred recently in the field of epilepsy, including a fundamental shift in the etiology of epileptogenic substrates found at surgery. Hippocampal sclerosis is no longer the most common etiology found at epilepsy surgery and this decrease has been associated with an increase in the incidence of focal cortical dysplasia and encephaloceles. Significant advances have been made in molecular biology and genetics underlying the basis of malformations of cortical development, and our ability to detect epileptogenic abnormalities with MR imaging has markedly improved. This article begins with a discussion of these trends and reviews imaging techniques essential for detecting of subtle epilepsy findings. Representative examples of subtle imaging findings are presented, which are often overlooked but should not be missed. These include temporal lobe encephaloceles, malformations of cortical development (and especially focal cortical dysplasia), hippocampal sclerosis, hippocampal malformation (also known as HIMAL), ulegyria, autoimmune encephalitis, and Rasmussen’s encephalitis. Recent findings on the pathophysiology and genetic underpinnings of several causes of localization-related epilepsy are incorporated. For instance, it has been recently found that focal cortical dysplasia IIb, tuberous sclerosis, hemimegalencephaly, and gangliogliomas are all the result of mutations of the mTOR pathway for cell growth

    Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe.

    Get PDF
    BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.)

    Cortical injury in multiple sclerosis; the role of the immune system

    Get PDF
    The easily identifiable, ubiquitous demyelination and neuronal damage that occurs within the cerebral white matter of patients with multiple sclerosis (MS) has been the subject of extensive study. Accordingly, MS has historically been described as a disease of the white matter. Recently, the cerebral cortex (gray matter) of patients with MS has been recognized as an additional and major site of disease pathogenesis. This acknowledgement of cortical tissue damage is due, in part, to more powerful MRI that allows detection of such injury and to focused neuropathology-based investigations. Cortical tissue damage has been associated with inflammation that is less pronounced to that which is associated with damage in the white matter. There is, however, emerging evidence that suggests cortical damage can be closely associated with robust inflammation not only in the parenchyma, but also in the neighboring meninges. This manuscript will highlight the current knowledge of inflammation associated with cortical tissue injury. Historical literature along with contemporary work that focuses on both the absence and presence of inflammation in the cerebral cortex and in the cerebral meninges will be reviewed

    Concurrent Myotonic Dystrophy and Inflammatory Myopathy in a Patient with HIV/AIDS

    No full text
    Neuromuscular complications are common in patients with HIV/AIDS at any stage of the disease process. Myopathies can be secondary to antiretroviral therapy, HIV myositis itself, or other etiologies. Here, we present the case of a middle-aged male with HIV who presented with myalgias and was diagnosed with myotonic dystrophy and HIV-associated polymyositis after extensive workup including clinical history and physical exam, laboratory markers, electromyogram, and muscle biopsy. This case illustrates the importance of a comprehensive workup for myopathy in HIV/AIDS and the possibility of multiple concurrent conditions

    Thoracic Epidural Teratoma: Case Report and Review of the Literature

    No full text
    Purpose Spinal teratomas comprise a rare subset of spinal cord tumors, and here, we describe an even rarer childhood thoracic extradural-intracanalicular teratoma. The clinical presentation, management, and pathophysiology of these tumors are reviewed to promote recognition and guide treatment of these lesions. Methods We report the case of a 21-month-old boy who presented with marked spasticity, as well as failure to ambulate and meet motor milestones. Additionally, we provide a literature review of spinal teratomas, including their clinical presentation, work-up, pathophysiology, and underlying genetics. Results An MRI of the spine revealed a large dorsal epidural tumor extending from T3 to T10 with heterogeneous contrast enhancement and severe spinal cord compression. The tumor was resected revealing a cystic mass with tissue resembling hair, muscle, as well as cartilage; pathology confirmed the diagnosis of teratoma. Gross total resection was achieved, and the child eventually gained ambulatory function. Conclusions Given that spinal teratomas are rare entities that can present with significant neurologic compromise, they must remain on clinicians’ differentials. Unfortunately, the exact origin of these tumors remains inconclusive and requires further investigation

    Genomic Characterization of Radiation-Induced Intracranial Undifferentiated Pleomorphic Sarcoma

    No full text
    Intracranial undifferentiated pleomorphic sarcoma remains a rare pathology within the sarcoma literature that may arise primarily or secondary after radiation therapy. Despite first-line treatment with maximal surgical resection, followed by nonstandardized adjuvant chemotherapy/radiation regimens, clinical prognosis remains exceedingly poor. Furthermore, there is a lack of genetic or molecular characterization to guide potential for targeted therapies. We present genomic analysis of a radiation-induced intracranial undifferentiated pleomorphic sarcoma in an 83-year-old woman with notable KIT and PDGFRA alterations. Further similar genomic studies of intracranial pleomorphic sarcoma are needed to develop better therapies for this rare but challenging disease entity

    A patient with central nervous system tuberculomas and a history of disseminated multi-drug-resistant tuberculosis

    No full text
    Tuberculosis (TB) is one of the leading causes of death worldwide, particularly in low- and middle-income countries. The global rates and numbers of drug resistant TB are rising. With increasing globalization, the spread of drug-resistant strains of TB has become a mounting global public health concern. We present a case of a young man previously treated for multi-drug resistant (MDR) TB in India who presented with neurological symptoms and central nervous system TB in the United States. His case highlights unique diagnostic and treatment challenges that are likely to become more commonplace with the increase of patients infected with drug-resistant TB and complicated extrapulmonary disease

    Neuropathology of New-Onset Refractory Status Epilepticus (NORSE)

    No full text
    New-Onset Refractory Status Epilepticus (NORSE), including its subtype with a preceding febrile illness known as FIRES (Febrile Infection-Related Epilepsy Syndrome), is one of the most severe forms of status epilepticus. Despite an extensive workup (clinical evaluation, EEG, imaging, biological tests), the majority of NORSE cases remain unexplained (i.e., “cryptogenic NORSE”). Understanding the pathophysiological mechanisms underlying cryptogenic NORSE and the related long-term consequences is crucial to improve patient management and preventing secondary neuronal injury and drug-resistant post-NORSE epilepsy. Previously, neuropathological evaluations conducted on biopsies or autopsies have been found helpful for identifying the etiologies of some cases that were previously of unknown cause. Here, we summarize the findings of studies reporting neuropathology findings in patients with NORSE, including FIRES. We identified 64 cryptogenic cases and 66 neuropathology tissue samples, including 37 biopsies, 18 autopsies, and seven epilepsy surgeries (the type of tissue sample was not detailed for 4 cases). We describe the main neuropathology findings and place a particular emphasis on cases for which neuropathology findings helped establish a diagnosis or elucidate the pathophysiology of cryptogenic NORSE, or on described cases in which neuropathology findings supported the selection of specific treatments for patients with NORSE
    corecore