58 research outputs found

    Mediterranean alien harmful algal blooms:Origins and impacts

    Get PDF
    Harmful algal blooms (HABs) are mostly phytoplankton blooms, which have detrimental environmental and socioeconomic impacts. The Mediterranean Sea due to its enclosed nature is of special concern since it has an enormously rich native biodiversity. Though, it is also the world's most invaded marine ecosystem and is considered at very high risk of future invasions. The aim of this review study is to explore the origins, establishment, environmental, and socioeconomic impacts of HABs caused by nonnative algal species in the Mediterranean Sea. Based on this, it is also discussed whether HABs form an increasing threat in the basin, and what could possibly be done to prevent or to minimize their impacts. The increasing rate of their introduction and the harmful impacts that they have on the environment, economy, and human health makes it important to have accurate knowledge about HABs. Anthropogenic activities and climate change are considered the main contributors of alien invasions but also the main enablers of HAB events. Mediterranean HABs are adequately studied, but there are no studies purposefully concerning invasive microalgae species in the basin. In the present study, 20 species have been identified, and an attempt has been made to collect their introduction information, as well as known or suspected impacts. Future research should be focused on data mining, current legislation updates, and monitoring of Mediterranean coastlines

    Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii

    Get PDF
    Effects of fluctuating irradiance regimes on excessive photosynthetically active radiation (PAR) and ultraviolet (UV) radiation sensitivity were assessed for Emiliania huxleyi (Lohman) and Thalassiosira weissflogii (Grunow) Fryxell and Hasle. Cultures acclimated to low irradiance were subjected to two irradiance regimes of equal daily dose: dynamic irradiance simulating vertical mixing within the water column and constant irradiance. For each regime two irradiance levels were studied. Growth was monitored for 3 d, after which pigment composition was determined. Next, excessive PAR and UV sensitivity was measured by studying viability loss during 4-h exposure to simulated surface irradiance (SSI). Furthermore, the effects of inhibition of D1 reaction center protein turnover were investigated by incubating samples with lincomycin prior to exposure. Dynamic irradiance reduced growth rates of both species as compared to constant irradiance. Pools of light-harvesting pigments increased in dynamic irradiance, whereas the protective pigment pools decreased compared to constant irradiance. Excessive irradiance sensitivity was enhanced in cells grown in fluctuating irradiance. Furthermore, viability loss was most pronounced in UV treatments combined with lincomycin. E. huxleyi was more sensitive to excessive irradiance than T. weissflogii, which coincided with a lower ratio between protective and light-harvesting pigments in the former species. Irradiance modulation by deep vertical mixing influences growth, pigment composition, and excessive PAR and UV sensitivity within days

    Taxon‐specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring

    Get PDF
    Effects of prolonged darkness on Arctic phytoplankton composition were investigated with lab experiments and a pigment time series in Kongsfjorden, Spitsbergen (78°55â€ČN). Chlorophyll a (Chl a), pigment composition, particulate organic carbon, cell numbers, and photosynthetic characteristics were studied in Arctic diatoms (Thalassiosira antarctica, Thalassiosira nordenskioeldii) and flagellates (Rhodomonas sp., Micromonas sp.) during 8 weeks of darkness and subsequent recovery in irradiance. Loss of photosynthetic functionality after 2 weeks of darkness was reversible in all species when returned to irradiance. Diatoms were more resistant to prolonged darkness (> 2 weeks) compared to the flagellates, with lower decline rates of Chl a and maximum quantum yield of PSII. T. nordenskioeldii showed rapid growth during recovery throughout 8 weeks of dark incubation, whereas recovery of flagellates diminished within 4 weeks. Ratios of taxonomic marker pigments relative to Chl a of all species showed limited variation during 8 weeks of dark incubation. The experimentally observed enhanced dark survival of diatoms was in agreement with pigment observations during four polar nights (2013–2017) in Kongsfjorden, which showed increased relative diatom abundance during declining biomass (down to 0.02 mg Chl a m−3). Therefore, a period of prolonged darkness gives Arctic diatoms a head start during the early stages of the spring bloom. The taxon‐specific survival traits can influence the geographical distribution of diatoms and flagellates within the polar oceans and their phenology. Furthermore, the persistence of Chl a of nonviable phytoplankton during darkness might influence biomass estimates during the polar night

    How does the 'ancient' asexual Philodina roseola (Rotifera:Bdelloidea) handle potential UVB-induced mutations?

    Get PDF
    Like other obligate asexuals, bdelloid rotifers are expected to suffer from degradation of their genomes through processes including the accumulation of deleterious mutations. However, sequence-based analyses in this regard remain inconclusive. Instead of looking for historical footprints of mutations in these ancient asexuals, we directly examined the susceptibility and ability to repair point mutations by the bdelloid Philodina roseola by inducing cyclobutane-pyrimidine dimers (CPDs) via exposure to UVB radiation (280-320 nm). For comparison, we performed analogous experiments with the facultative asexual monogonont rotifer Brachionus rubens. Different strategies were found for the two species. Philodina roseola appeared to shield itself from CPD induction through uncharacterized UV-absorbing compounds and, except for the genome reconstruction that occurs after desiccation, was largely unable to repair UVB-induced damage. By contrast, B. rubens was more susceptible to UVB irradiation, but could repair all induced damage in similar to 2 h. In addition, whereas UV irradiation had a significant negative impact on the reproductive output of P. roseola, and especially so after desiccation, that of B. rubens was unaffected. Although the strategy of P. roseola might suffice under natural conditions where UVB irradiation is less intense, the lack of any immediate CPD repair mechanisms in this species remains perplexing. It remains to be investigated how typical these results are for bdelloids as a group and therefore how reliant these animals are on desiccation-dependent genome repair to correct potential DNA damage given their obligate asexual lifestyle.</p

    Variability of dinoflagellates and their associated toxins in relation with environmental drivers in Ambon Bay, eastern Indonesia

    Get PDF
    The aim of the present work was to unravel which environmental drivers govern the dynamics of toxic dinoflagellate abundance as well as their associated paralytic shellfish toxins (PSTs), diarrhetic shellfish toxins (DSTs) and pectenotoxin-2 (PTX2) in Ambon Bay, Eastern Indonesia. Weather, biological and physicochemical parameters were investigated weekly over a 7-month period. Both PSTs and PTX2 were detected at low levels, yet they persisted throughout the research. Meanwhile, DSTs were absent. A strong correlation was found between total particulate PST and Gymnodinium catenatum cell abundance, implying that this species was the main producer of this toxin. PTX2 was positively correlated with Dinophysis miles cell abundance. Vertical mixing, tidal elevation and irradiance attenuation were the main environmental factors that regulated both toxins and cell abundances, while nutrients showed only weak correlations. The present study indicates that dinoflagellate toxins form a potential environmental, economic and health risk in this Eastern Indonesian bay

    Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula

    Get PDF
    The West Antarctic Peninsula (WAP) is a climatically sensitive region where periods of strong warming have caused significant changes in the marine ecosystem and food-web processes. Tight coupling between phytoplankton and higher trophic levels implies that the coastal WAP is a bottom-up controlled system, where changes in phytoplankton dynamics may largely impact other food-web components. Here, we analysed the inter-decadal time series of year-round chlorophyll-a (Chl) collected from three stations along the coastal WAP: Carlini Station at Potter Cove (PC) on King George Island, Palmer Station on Anvers Island and Rothera Station on Adelaide Island. There were trends towards increased phytoplankton biomass at Carlini Station (PC) and Palmer Station, while phytoplankton biomass declined significantly at Rothera Station over the studied period. The impacts of two relevant climate modes to the WAP, the El Niño-Southern Oscillation and the Southern Annular Mode, on winter and spring phytoplankton biomass appear to be different among the three sampling stations, suggesting an important role of local-scale forcing than large-scale forcing on phytoplankton dynamics at each station. The inter-annual variability of seasonal bloom progression derived from considering all three stations together captured ecologically meaningful, seasonally co-occurring bloom patterns which were primarily constrained by water-column stability strength. Our findings highlight a coupled link between phytoplankton and physical and climate dynamics along the coastal WAP, which may improve our understanding of overall WAP food-web responses to climate change and variability

    Atlantic Advection Driven Changes in Glacial Meltwater: Effects on Phytoplankton Chlorophyll-a and Taxonomic Composition in Kongsfjorden, Spitsbergen

    Get PDF
    Phytoplankton biomass and composition was investigated in a high Arctic fjord (Kongsfjorden, 79◩N, 11◩40â€ČE) using year round weekly pigment samples collected from October 2013 to December 2014. In addition, phytoplankton dynamics supplemented with physical and chemical characteristics of the 2014 spring bloom (April–June 2014) were assessed in two locations in Kongsfjorden. The goal was to elucidate effects of Atlantic advection on spatial phytoplankton chlorophyll-a (chl-a) and taxonomic composition. Chl-a declined during the polar night to a minimum of 0.01mg m−3, followed by a 1000-fold increase until May 28. Atlantic advection prevented sea ice formation and increased springtime melting of marine terminating glaciers. This coincided with spatial and temporal differences in abundances of flagellates (prasinophytes, haptophytes, cryptophytes, and chrysophytes) and diatoms in early spring. More flagellated phytoplankton were observed in the non-stratified central Kongsfjorden, whereas diatoms were more abundant in the stratified inner fjord. Contrasting conditions between locations were reduced when glacial melt water stratification expanded toward the mouth of the fjord, mediating a diatom dominated surface bloom at both locations. We suggest that glacial melt water governs spring bloom spatial timing and composition in the absence of sea ice driven stratification. The spring bloom exhausted surface nutrient concentrations by the end of May. The nutrient limited post bloom period (June–October) was characterized by reduced biomass and pigments of flagellated phytoplankton, consisting of prasinophytes, haptophytes, chrysophytes, and to a lesser extent cryptophytes and peridinin-containing dinoflagellates

    Response of a natural Antarctic phytoplankton assemblage to changes in temperature and salinity

    Get PDF
    The climate around the Western Antarctic Peninsula (WAP) is rapidly changing and dramatically affecting marine coastal waters. Increases in air and seawater temperatures, not matter how small, can alter coastal biological communities due to both temperature increases as well as salinity reduction from glacier melting. The aim of this study was to evaluate the individual and combined effects of elevated sea surface temperature (+4 °C) and decreased salinity (−4) on growth and assemblage composition of natural summer phytoplankton from Potter Cove (King George Island, South Shetlands, northern WAP), using an outdoor microcosm experi-ment. Pigment composition was analyzed by high performance liquid chromatography (HPLC/Chemtax) and species composition by light and electron microscopy. Increases in phytoplankton biomass during the first 3 days at elevated-temperatures coincided with an increase in the abundance and the specific growth rate of small centric diatoms (Chaetoceros socialis and Shionodiscus gaarderae, mostly observed in temperate waters) and unidentified small phytoflagellates &lt; 5 ÎŒm. In contrast, pennate diatoms significantly decreased. At the end of the experiment on day 7, under nitrate and phosphate limitation, chlorophytes abundances increased under low salinity whereas prasinophytes decreased in all treatments. This study suggests that climate change could notably affect Antarctic phytoplankton composition by favouring temperate-water species previously undetected in Antarctic waters, such us S. gaarderae. Moreover, the observed changes in phytoplankton structure, associated with an increase of nano- over micro-size taxa, could have important implications for future Antarctic food webs.Facultad de Ciencias Naturales y Muse

    Opportunities and Challenges of Microalgal Cultivation on Wastewater

    Get PDF
    South East Asia dominates the production of palm oil worldwide. During the traditional wet processing, palm oil mill effluent (POME) wastewater is generated which poses serious environmental problems. Wastewater treatment using microalgae was initiated recently because of the advantages to lower nutrient content efficiently while the biomass can be utilized as bulk biomass or value added product. In the present review the utilization of wastewater for microalgal cultivation is discussed with particular attention to the feasibility of utilizing POME as microalgal growth medium. Whereas much recent research was focused on the production of bulk biomass, the potential for the production of value-added compounds has not often been addressed. Various strategies of obtaining high-value products are discussed. These include cultivation systems, algal species selection as well as and their growth strategies (autotrophic, heterotrophic, mixotrophic). In addition, potential problems associated with microalgal cultivation on POME will be evaluated. Finally, the concept of using stepwise strategies to obtain high value added product will be proposed
    • 

    corecore