23 research outputs found

    Identification of a structural and functional domain in xNAP1 involved in protein–protein interactions

    Get PDF
    xNAP1 (Xenopus nucleosome assembly protein) belongs to the family of nucleosome assembly proteins (NAPs) and shares 92% identity with human and mouse NAP1. NAPs have been reported to have a role in nucleosome assembly, cell cycle regulation, cell proliferation and transcriptional control, although the precise function of NAP1 is still not clear. Here we report the identification of a putative domain of xNAP1 by limited proteolysis. This domain has been mapped in the xNAP1 protein sequence to residues 38–282 and thus lacks the acidic sequences at the N- and C-termini. We have studied this domain and related fragments in vitro and by a functional assay involving over-expression of the protein in Xenopus laevis embryos. Analytical ultracentrifugation shows that removal of the acidic N- and C-terminal regions does not prevent the formation of larger multimers, which are predominantly hexadecamers. Injection of mRNA encoding the full-length xNAP1 or the putative domain and other related constructs into Xenopus embryos gave identical phenotypes. These results are discussed in relation to protein–protein interactions between NAP1 octamers and a possible ‘squelching’ mechanism

    Identification of a structural and functional domain in xNAP1 involved in protein–protein interactions

    Get PDF
    xNAP1 (Xenopus nucleosome assembly protein) belongs to the family of nucleosome assembly proteins (NAPs) and shares 92% identity with human and mouse NAP1. NAPs have been reported to have a role in nucleosome assembly, cell cycle regulation, cell proliferation and transcriptional control, although the precise function of NAP1 is still not clear. Here we report the identification of a putative domain of xNAP1 by limited proteolysis. This domain has been mapped in the xNAP1 protein sequence to residues 38–282 and thus lacks the acidic sequences at the N- and C-termini. We have studied this domain and related fragments in vitro and by a functional assay involving over-expression of the protein in Xenopus laevis embryos. Analytical ultracentrifugation shows that removal of the acidic N- and C-terminal regions does not prevent the formation of larger multimers, which are predominantly hexadecamers. Injection of mRNA encoding the full-length xNAP1 or the putative domain and other related constructs into Xenopus embryos gave identical phenotypes. These results are discussed in relation to protein–protein interactions between NAP1 octamers and a possible ‘squelching’ mechanism

    An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus

    Get PDF
    In recent years CRISPR-Cas9 knockouts (KO) have become increasingly ultilised to study gene function. MicroRNAs (miRNAs) are short non-coding RNAs, 20–22 nucleotides long, which affect gene expression through post-transcriptional repression. We previously identified miRNAs-196a and −219 as implicated in the development of Xenopus neural crest (NC). The NC is a multipotent stem-cell population, specified during early neurulation. Following EMT, NC cells migrate to various points in the developing embryo where they give rise to a number of tissues including parts of the peripheral nervous system, pigment cells and craniofacial skeleton. Dysregulation of NC development results in many diseases grouped under the term neurocristopathies. As miRNAs are so small, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore designed a novel approach using two guide RNAs to effectively ‘drop out’ a miRNA. We have knocked out miR-196a and miR-219 and compared the results to morpholino knockdowns (KD) of the same miRNAs. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of whole-mount in situ hybridization of key NC and neural plate border markers such as Pax3, Xhe2, Sox10 and Snail2, q-RT-PCR and Sanger sequencing. To show specificity we have also rescued the knockout phenotype using miRNA mimics. miRNA-219 and miR-196a KO’s both show loss of NC, altered neural plate and hatching gland phenotypes. Tadpoles show gross craniofacial and pigment phenotypes

    Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support

    Get PDF
    Two species of the clawed frog family, Xenopus laevis and X. tropicalis, are widely used as tools to investigate both normal and disease-state biochemistry, genetics, cell biology, and developmental biology. To support both frog specialist and non-specialist scientists needing access to these models for their research, a number of centralized resources exist around the world. These include centers that hold live and frozen stocks of transgenic, inbred and mutant animals and centers that hold molecular resources. This infrastructure is supported by a model organism database. Here, we describe much of this infrastructure and encourage the community to make the best use of it and to guide the resource centers in developing new lines and libraries

    DNA structure and its recognition by minor groove binding ligands

    No full text

    Advances in genome editing tools

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horb, M., Abu-Daya, A., Wlizla, M., Noble, A., & Guille, M. “Advances in genome editing tools.” In Xenopus, edited by Abraham Fainsod, Sally A. Moody, 207–221. Boca Raton: CRC Press, 2022, https://doi.org/10.1201/9781003050230-16.This book focuses on the amphibian, Xenopus, one of the most commonly used model animals in the biological sciences. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to our knowledge in cell biology, developmental biology, molecular biology, and neurobiology. In recent years, with the completion of the genome sequence of the main two species and the application of genome editing techniques, Xenopus has emerged as a powerful system to study fundamental disease mechanisms and test treatment possibilities. Xenopus has proven an essential vertebrate model system for understanding fundamental cell and developmental biological mechanisms, for applying fundamental knowledge to pathological processes, for deciphering the function of human disease genes, and for understanding genome evolution. Key Features Provides historical context of the contributions of the model system Includes contributions from an international team of leading scholars Presents topics spanning cell biology, developmental biology, genomics, and disease model Describes recent experimental advances Incorporates richly illustrated diagrams and color imagesThe NXR is funded by grants from the National Institutes of Health (P40OD010997, R24OD030008, and R01HD084409). The EXRC is supported by grants from the Wellcome Trust (212942/Z/18/Z) and BBSRC (BB/R014841/1)

    Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6

    Get PDF
    AbstractMechanisms coupling heart function and cardiac morphogenesis can be accessed in lower vertebrate embryos that can survive to swimming tadpole stages on diffused oxygen. Forward genetic screens in Xenopus tropicalis have identified more than 80 mutations affecting diverse developmental processes, including cardiac morphogenesis and function. In the first positional cloning of a mutation in X. tropicalis, we show that non-contractile hearts in muzak (muz) embryos are caused by a premature stop codon in the cardiac myosin heavy chain gene myh6. The mutation deletes the coiled-coil domain responsible for polymerization into thick filaments, severely disrupting the cardiomyocyte cytoskeleton. Despite the lack of contractile activity and absence of a major structural protein, early stages of cardiac morphogenesis including looping and chamber formation are grossly normal. Muz hearts subsequently develop dilated chambers with compressed endocardium and fail to form identifiable cardiac valves and trabeculae

    Zygotic nucleosome assembly protein–like 1 has a specific, non–cell autonomous role in hematopoiesis

    No full text
    Nucleosome assembly proteins (NAPs) bind core histones, facilitate chromatin remodeling, and can act as transcriptional coactivators. We previously described the isolation of a Xenopus NAP1-like (xNAP1L) cDNA, which encodes a member of this protein family. Its zygotic expression is restricted to neural cells, the outer cells of the ventral blood island (VBIs), and the ectoderm overlying the blood precursors. Here, we report that depletion of zygotic xNAP1L in embryos produces no obvious morphologic phenotype, but ablates α-globin mRNA expression in the VBIs. Transcript levels of the hematopoietic precursor genes SCL and Xaml (Runx-1) are also reduced in the VBIs. SCL expression can be rescued by injection of xNAP1L mRNA into the ectoderm, showing that the effect of xNAP1L can be non–cell autonomous. Fli1 and Hex, genes expressed in hemangioblasts but subsequently endothelial markers, were unaffected, suggesting that xNAP1L is required for the hematopoietic lineage specifically. Our data are consistent with a requirement for xNAP1L upstream of SCL, and injection of SCL mRNA into xNAP1L-depleted embryos rescues α-globin expression. Thus, xNAP1L, which belongs to a family of proteins previously believed to have general roles, has a specific function in hematopoiesis
    corecore