1,132 research outputs found

    Role of electronic correlations in the Fermi surface formation of Nax_xCoO2_2

    Full text link
    Band structure of metallic sodium cobaltate Nax_xCoO2_2 (xx=0.33, 0.48, 0.61 0.72) has been investigated by local density approximation+Hubbard UU (LDA+UU) method and within Gutzwiller approximation for the Co-t2gt_{2g} manifold. Correlation effects being taken into account results in suppression of the eg′e'_g hole pockets at the Fermi surface in agreement with recent angle-resolved photo-emission spectroscopy (ARPES) experiments. In the Gutzwiller approximation the bilayer splitting is significantly reduced due to the correlation effects. The formation of high spin (HS) state in Co dd-shell was shown to be very improbable.Comment: 6 pages, 2 figure

    First-principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: Dynamical Mean-field Theory

    Full text link
    A recently developed dynamical mean-field theory in the iterated perturbation theory approximation was used as a basis for construction of the "first principles" calculation scheme for investigating electronic structure of strongly correlated electron systems. This scheme is based on Local Density Approximation (LDA) in the framework of the Linearized Muffin-Tin-Orbitals (LMTO) method. The classical example of the doped Mott-insulator La_{1-x}Sr_xTiO_3 was studied by the new method and the results showed qualitative improvement in agreement with experimental photoemission spectra.Comment: 11 pages, 3 Postscript figures, LaTeX, submit in Journal of Physics: Condensed Matte

    The influence of the rare earth ions radii on the Low Spin to Intermediate Spin state transition in lanthanide cobaltite perovskites: LaCoO3 vs. HoCoO3

    Full text link
    We present first principles LDA+U calculations of electronic structure and magnetic state for LaCoO3 and HoCoO3. Low Spin to Intermediate Spin state transition was found in our calculations using experimental crystallographic data for both materials with a much higher transition temperature for HoCoO3, which agrees well with the experimental estimations. Low Spin state t6e0 (non-magnetic) to Intermediate Spin state t5e1 (magnetic) transition of Co(3+) ions happens due to the competition between crystal field t_2g-e_g splitting and effective exchange interaction between 3dd spin-orbitals. We show that the difference in crystal structure parameters for HoCoO3 and LaCoO3 due to the smaller ionic radius of Ho ion comparing with La ion results in stronger crystal field splitting for HoCoO3 (0.09 eV ~ 1000 K larger than for LaCoO3) and hence tip the balance between the Low Spin and Intermediate Spin states to the non-magnetic solution in HoCoO3.Comment: 13 pages, 6 figure

    Orbital Selective Pressure-Driven Metal-Insulator Transition in FeO from Dynamical Mean-Field Theory

    Full text link
    In this Letter we report the first LDA+DMFT (method combining Local Density Approximation with Dynamical Mean-Field Theory) results of magnetic and spectral properties calculation for paramagnetic phases of FeO at ambient and high pressures (HP). At ambient pressure (AP) calculation gave FeO as a Mott insulator with Fe 3dd-shell in high-spin state. Calculated spectral functions are in a good agreement with experimental PES and IPES data. Experimentally observed metal-insulator transition at high pressure is successfully reproduced in calculations. In contrast to MnO and Fe2_2O3_3 (d5d^5 configuration) where metal-insulator transition is accompanied by high-spin to low-spin transition, in FeO (d6d^6 configuration) average value of magnetic moment \sqrt{} is nearly the same in the insulating phase at AP and metallic phase at HP in agreement with X-Ray spectroscopy data (Phys. Rev. Lett. {\bf83}, 4101 (1999)). The metal-insulator transition is orbital selective with only t2gt_{2g} orbitals demonstrating spectral function typical for strongly correlated metal (well pronounced Hubbard bands and narrow quasiparticle peak) while ege_g states remain insulating.Comment: 4 pages, 4 figure

    Electronic Structure and Lattice Relaxation Related to Fe in Mgo

    Full text link
    The electronic structure of Fe impurity in MgO was calculated by the linear muffin-tin orbital--full-potential method within the conventional local-density approximation (LDA) and making use of the LDA+UU formalism. The importance of introducing different potentials, depending on the screened Coulomb integral UU, is emphasized for obtaining a physically reasonable ground state of the Fe2+^{2+} ion configuration. The symmetry lowering of the ion electrostatic field leads to the observed Jahn--Teller effect; related ligand relaxation confined to tetragonal symmetry has been optimized based on the full-potential total energy results. The electronic structure of the Fe3+^{3+} ion is also calculated and compared with that of Fe2+^{2+}.Comment: 13 pages + 4 PostScript figures, Revtex 3.0, SISSA-CM-94-00

    Ground State Properties and Optical Conductivity of the Transition Metal Oxide Sr2VO4{\rm Sr_{2}VO_{4}}

    Full text link
    Combining first-principles calculations with a technique for many-body problems, we investigate properties of the transition metal oxide Sr2VO4{\rm Sr_{2}VO_{4}} from the microscopic point of view. By using the local density approximation (LDA), the high-energy band structure is obtained, while screened Coulomb interactions are derived from the constrained LDA and the GW method. The renormalization of the kinetic energy is determined from the GW method. By these downfolding procedures, an effective Hamiltonian at low energies is derived. Applying the path integral renormalization group method to this Hamiltonian, we obtain ground state properties such as the magnetic and orbital orders. Obtained results are consistent with experiments within available data. We find that Sr2VO4{\rm Sr_{2}VO_{4}} is close to the metal-insulator transition. Furthermore, because of the coexistence and competition of ferromagnetic and antiferromgnetic exchange interactions in this system, an antiferromagnetic and orbital-ordered state with a nontrivial and large unit cell structure is predicted in the ground state. The calculated optical conductivity shows characteristic shoulder structure in agreement with the experimental results. This suggests an orbital selective reduction of the Mott gap.Comment: 38pages, 22figure
    • …
    corecore