12 research outputs found

    Divergent Effect of Tacalcitol (PRI-2191) on Th17 Cells in 4T1 Tumor Bearing Young and Old Ovariectomized Mice

    No full text
    Vitamin D and its analogs are known for their role in the development of breast cancer and in immunomodulation. Our previous studies have shown the pro-metastatic effect of calcitriol and tacalcitol (PRI-2191) in young mice bearing 4T1 breast cancer and the anti-metastatic effect in aged ON ariectomized (OVX) mice. Therefore, the aim of our work was to characterize Th17 cell population in young and aged OVX mice bearing 4T1 tumors treated with calcitriol and PRI-2191. The expression of genes typical for Th17 cells was examined in splenocytes, as well as splenocytes differentiated with IL-6 and TGF-beta to Th17 cells (iTh17). Expression of genes encoding vitamin D receptor (Vdr) and osteopontin (Spp1) as well as the secretion of IL-17A were evaluated in iTh17 cells. PRI-2191 treatment increased the expression of Rora and Rorc transcription factors, Il17a, Il17re and I121 in iThl7 cells from young mice. In aged OVX mice this effect was not observed. Increased expression was observed in the case of Vdr and Spp1 genes in iThl7 cells from young mice treated with PRI-2191. What is more, in young mice treated with PRI-2191 the secretion of IL-17A to the culture media by iTh17 cells was increased, whereas in aged OVX mice a significant decrease was noted. Increased expression of Spp1 in young mice treated with PRI-2191 may enhance the differentiation of Th17 cells

    Triazene salts: Design, synthesis, ctDNA interaction, lipophilicity determination, DFT calculation, and antiproliferative activity against human cancer cell lines

    No full text
    Synthesis, characterization and investigation of antiproliferative activity of nine triazene salts against human cancer cells lines (MV-4-11, MCF-7, JURKAT, HT-29, Hep-G2, HeLa, Du-145 and DAUDI), and normal human mammary epithelial cell line (MCF7-10A) is presented. The structures of novel compounds were determined using 1H and 13C NMR, and GC-APCI-MS analyses. Among the derivatives, compound 2c, 2d, 2e and 2f has very strong activity against biphenotypic B myelomonocytic leukemia MV4-11, with IC50 values from 5.42 to 7.69 ”g/ml. The cytotoxic activity of compounds 2c-2f against normal human mammary gland epithelial cells MCF-10A is 6–11 times lower than against cancer cell lines. Our results also show that compounds 2c and 2f have very strong activity against DAUDI and HT-29 with IC50 4.91 ”g/ml and 5.59 ”g/ml, respectively. Their lipophilicity was determined using reversed-phase ultra-performance liquid chromatography and correlated with antiproliferative activity. Our UV–Vis spectroscopic results indicate also that triazene salts tends to interact with negatively charged DNA phosphate chain. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out within the Density Functional Theory. Keywords: Antiproliferative activity, Triazene, Nuclear Magnetic Resonance, Lipophilicity, DN

    Vitamin D Compounds PRI-2191 and PRI-2205 Enhance Anastrozole Activity in Human Breast Cancer Models

    No full text
    1,25-Dihydroxycholecalciferol, the hormonally active vitamin D3 metabolite, is known to exhibit therapeutic effects against breast cancer, mainly by lowering the expression of estrogen receptors and aromatase activity. Previously, the safety of the vitamin D active metabolite (24R)-1,24-dihydroxycholecalciferol (PRI-2191) and 1,25(OH)2D3 analog PRI-2205 was tested, and the in vitro activity of these analogs against different cancer cell lines was studied. We determined the effect of the two vitamin D compounds on anastrozole (An) activity against breast cancer based on antiproliferative activity, ELISA, flow cytometry, enzyme inhibition potency, PCR, and xenograft study. Both the vitamin D active metabolite and synthetic analog regulated the growth of not only estrogen receptor-positive cells (T47D and MCF-7, in vitro and in vivo), but also hormone-independent cancer cells such as SKBR-3 (HER-2-positive) and MDA-MB-231 (triple-negative), despite their relatively low VDR expression. Combined with An, PRI-2191 and PRI-2205 significantly inhibited the tumor growth of MCF-7 cells. Potentiation of the antitumor activity in combined treatment of MCF-7 tumor-bearing mice is related to the reduced activity of aromatase by both An (enzyme inhibition) and vitamin D compounds (switched off/decreased aromatase gene expression, decreased expression of other genes related to estrogen signaling) and by regulation of the expression of the estrogen receptor ERα and VDR

    Calcitriol and Its Analogs Establish the Immunosuppressive Microenvironment That Drives Metastasis in 4T1 Mouse Mammary Gland Cancer

    No full text
    In our previous study, calcitriol and its analogs PRI-2191 and PRI-2205 stimulated 4T1 mouse mammary gland cancer metastasis. Therefore, we aimed to analyze the inflammatory response in 4T1-bearing mice treated with these compounds. Gene expression analysis of the splenocytes and regional lymph nodes demonstrated prevalence of the T helper lymphocytes (Th2) response with an increased activity of regulatory T (Treg) lymphocytes in mice treated with these compounds. We also observed an increased number of mature granulocytes and B lymphocytes and a decreased number of TCD4+, TCD4+CD25+, and TCD8+, as well as natural killer (NK) CD335+, cells in the blood of mice treated with calcitriol and its analogs. Among the splenocytes, we observed a significant decrease in NK CD335+ cells and an increase in TCD8+ cells. Calcitriol and its analogs decreased the levels of interleukin (IL)-1β and IL-10 and increased the level of interferon gamma (IFN-γ) in the plasma. In the tumor tissue, they caused an increase in the level of IL-10. Gene expression analysis of lung tissue demonstrated an increased level of osteopontin (Spp1) and transforming growth factor β (TGF-β) mRNA. The expression of Spp1 was also elevated in lymph nodes. Calcitriol and its analogs caused prevalence of tumor-conducive changes in the immune system of 4T1 tumor-bearing mice, despite the induction of some tumor-disadvantageous effects

    Modulation of Fibroblast Activity via Vitamin D<sub>3</sub> Is Dependent on Tumor Type—Studies on Mouse Mammary Gland Cancer

    No full text
    Vitamin D3 and its analogs are known to modulate the activity of fibroblasts under various disease conditions. However, their impact on cancer-associated fibroblasts (CAFs) is yet to be fully investigated. The aim of this study was to characterize CAFs and normal fibroblasts (NFs) from the lung of mice bearing 4T1, 67NR, and E0771 cancers and healthy mice fed vitamin-D3-normal (1000 IU), -deficient (100 IU), and -supplemented (5000 IU) diets. The groups receiving control (1000 IU) and deficient diets (100 IU) were gavaged with calcitriol (+cal). In the 4T1-bearing mice from the 100 IU+cal group, increased NFs activation (increased α-smooth muscle actin, podoplanin, and tenascin C (TNC)) with a decreased blood flow in the tumor was observed, whereas the opposite effect was observed in the 5000 IU and 100 IU groups. CAFs from the 5000 IU group of E0771-bearing mice were activated with increased expression of podoplanin, platelet-derived growth factor receptor ÎČ, and TNC. In the 100 IU+cal group of E0771-bearing mice, a decreased blood flow was recorded with decreased expression of fibroblast growth factor 23 (FGF23) and C-C motif chemokine ligand 2 (CCL2) in tumors and increased expression of TNC on CAFs. In the 67NR model, the impact of vitamin D3 on blood flow or CAFs and lung NFs was not observed despite changes in plasma and/or tumor tissue concentrations of osteopontin (OPN), CCL2, transforming growth factor-ÎČ, vascular endothelial growth factor, and FGF23. In healthy mice, divergent effects of vitamin D3 supplementation/deficiency were observed, which lead to the creation of various body microenvironments depending on the mouse strain. Tumors developing in such microenvironments themselves modified the microenvironments by producing, for example, higher concentrations of OPN and stromal-cell-derived factor 1 (4T1), which influences the response to vitamin D3 supplementation/deficiency and calcitriol administration

    Dual effect of vitamin D3 on breast cancer-associated fibroblasts

    No full text
    Abstract Background Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Despite the well-known in vitro antitumoral effect of vitamin D3 (VD3), its impact on breast CAFs is almost unknown. In this study, we analyzed the ex vivo effects of calcitriol on CAFs isolated from breast cancer tissues. Methods CAFs were cultured with 1 and 10 nM calcitriol and their phenotype; gene expression, protein expression, and secretion were assessed. Calcitriol-treated CAFs-conditioned media (CM) were used to analyze the effect of CAFs on the migration and protein expression of MCF-7 and MDA-MB-231 cells. Results Tumor tissues from VD3-deficient patients exhibited lower levels of ÎČ-catenin and TGFÎČ1, along with higher levels of CYP24A1 compared to VD3-normal patients. In VD3-deficient patients, CAF infiltration was inversely associated with CYP24A1 levels and positively correlated with OPN levels. Calcitriol diminished CAFs’ viability, but this effect was weaker in premenopausal and VD3-normal patients. Calcitriol reduced mRNA expression of CCL2 , MMP9 , TNC, and increased PDPN , SPP1, and TIMP1. It also decreased the secretion of CCL2, TNC, and the activity of MMP-2, while increasing cellular levels of TIMP1 in CAFs from all patient groups. In nonmetastatic and postmenopausal patients, PDPN surface expression increased, and CAFs CM from these groups decreased MCF-7 cell migration after ex vivo calcitriol treatment. In premenopausal and VD3-deficient patients, calcitriol reduced IDO1 expression in CAFs. Calcitriol-treated CAFs CM from these patients decreased OPN expression in MCF-7 and/or MDA-MB-231 cells. However, in premenopausal patients, calcitriol-treated CAFs CM also decreased E-cadherin expression in both cell lines. Conclusion The effects of calcitriol on breast CAFs, both at the gene and protein levels, are complex, reflecting the immunosuppressive or procancer properties of CAFs. The anticancer polarization of CAFs following ex vivo calcitriol treatment may result from decreased CCL2, TNC (gene and protein), MMP9, and MMP-2, while the opposite effect may result from increased PDPN , TIMP1 (gene and protein), and SPP1. Despite these multifaceted effects of calcitriol on molecule expression, CAFs’ CMs from nonmetastatic and postmenopausal patients treated ex vivo with calcitriol decreased the migration of MCF-7 cells

    Vitamin D Metabolite Profile in Cholecalciferol- or Calcitriol-Supplemented Healthy and Mammary Gland Tumor-Bearing Mice

    No full text
    To analyze if the prometastatic activity of calcitriol (active vitamin D3 metabolite), which was previously observed in a 4T1 breast cancer model, is also found in other breast cancers, and to assess the impact of various schemes of vitamin D supply, we used 4T1 and E0771 mouse metastatic and 67NR nonmetastatic cells in this study. BALB/c and C57BL/6 healthy and tumor-bearing mice were exposed to a control (1000 IU), low- (100 IU), and high- (5000 IU) vitamin D3 diets. Additionally, from day 7 of tumor transplantation, the 1000 and 100 IU groups were gavaged with calcitriol (+cal). After 8 weeks of feeding, plasma levels of 25(OH)D3, 24,25(OH)2D3, and 3-epi-25(OH)D3 were significantly lower in calcitriol-treated and vitamin D-deficient groups than in the control, whereas the levels of all metabolites were increased in the 5000 IU group. The ratio of 25(OH)D3:24,25(OH)2D3 was increased in both calcitriol-treated groups, whereas the ratio of 25(OH)D3:3-epi-25(OH)D3 was increased only in the 100 IU group but decreased in the 5000 IU group. In contrast to E0771, 4T1 lung metastasis was accelerated in all vitamin D-supplemented mice, as well as in the deficient group with an increased inflammatory response. 67NR tumor growth was transiently inhibited in the 1000 IU+cal group, but single metastases were observed in the 5000 and 100 IU groups. Based on the results, we conclude that various schemes of vitamin D supply and vitamin D deficiency led to similar metabolite profiles irrespective of the mice strain and tumor burden. However, depending on the type of breast cancer, different effects on tumor growth and metastasis were noticed

    Calcitriol promotes M2 polarization of tumor-associated macrophages in 4T1 mouse mammary gland cancer via the induction of proinflammatory cytokines

    No full text
    Abstract Our research found that vitamin D3 (VD3) treatment increased lung metastasis in mice with 4T1 murine breast cancer (BC). This study aims to investigate the impact of VD3 on the activation of tumor-associated macrophages (TAMs) in BC. Mice bearing 4T1, E0771, 67NR BC cells, and healthy mice, were fed diets with varying VD3 contents (100—deficient, 1000—normal, and 5000 IU/kg—elevated). Some mice in the 1000 and 100 IU/kg groups received calcitriol. We studied bone metastasis and characterized TAMs and bone marrow-derived macrophages (BMDMs). 4T1 cells had higher bone metastasis potential in the 5000 IU/kg and calcitriol groups. In the same mice, an elevated tumor osteopontin level and M2 polarization of TAMs (MHCIIlow CD44high phenotype) were observed. Gene expression analysis confirmed M2 polarization of 4T1 (but not 67NR) TAMs and BMDMs, particularly in the 100 IU + cal group (increased Mrc1, Il23, and Il6). This polarization was likely due to COX-2/PGE2 induction in 4T1 calcitriol-treated cells, leading to increased proinflammatory cytokines like IL-6 and IL-23. Future studies will explore COX-2/PGE2 as a primary mediator of calcitriol-stimulated inflammation in the BC microenvironment, especially relevant for BC patients with VD3 deficiency and supplementation

    Unfavorable effect of calcitriol and its low-calcemic analogs on metastasis of 4T1 mouse mammary gland cancer

    No full text
    This study was supported by the National Science Center granted on the basis of the decision number DEC‑2013/11/B/NZ5/00162. This study was also supported by Wroclaw Center of Biotechnology within a program - The Leading National Research Center (KNOW) for years 2014‑2018Low vitamin D status is considered as a risk factor for breast cancer and has prognostic significance. Furthermore, vitamin D deficiency increases after adjuvant cancer therapy, which alters bone metabolism increasing the risk of osteoporosis. It is now postulated that vitamin D supplementation in breast cancer treatment delays the recurrence of cancer thereby extending survival. We evaluated the impact of calcitriol and its low-calcemic analogs, PRI2191 and PRI2205, on the tumor growth, angiogenesis, and metastasis of 4T1 mouse mammary gland cancer. Gene expression analysis related to cancer invasion/metastasis, realtime PCR, ELISA, western blotting, and histochemical studies were performed. In vitro studies were conducted to compare the effects of calcitriol and its analogs on 4T1 and 67NR cell proliferation and expression of selected proteins. Calcitriol and its analogs increased lung metastasis without influencing the growth of primary tumor. The levels of plasma 17beta-estradiol and transforming growth factor beta (TGFbeta) were found to be elevated after treatment. Moreover, the results showed that tumor blood perfusion improved and osteopontin (OPN) levels increased, whereas vascular endothelial growth factor (VEGF) and TGFbeta levels decreased in tumors from treated mice. All the studied treatments resulted in increased collagen content in the tumor tissue in the early step of tumor progression, and calcitriol caused an increase in collagen content in lung tissue. In addition, in vitro proliferation of 4T1 tumor cells was not found to be affected by calcitriol or its analogs in contrast to non-metastatic 67NR cells. Calcitriol and its analogs enhanced the metastatic potential of 4T1 mouse mammary gland cancer by inducing the secretion of OPN probably via host cells. In addition, OPN tumor overexpression prevailed over the decreasing tumor TGFbeta level and blood vessel normalization via tumor VEGF deprivation induced by calcitriol and its analogs. Moreover, the increased plasma TGFbeta and 17beta-estradiol levels contributed to the facilitation of metastatic proces

    Calcitriol Analogues Decrease Lung Metastasis but Impair Bone Metabolism in Aged Ovariectomized Mice Bearing 4T1 Mammary Gland Tumours

    Get PDF
    Calcitriol and its analogues are considered drugs supporting the anticancer treatment of breast cancer and preventing the osteoporosis that results from the development of cancer or from chemotherapy or hormone therapy. Following the orthotopic implantation of 4T1 mammary carcinoma cells into aged ovariectomized (OVX) mice, we evaluated the effects of calcitriol and its two analogues, PRI-2191 and PRI-2205, on metastatic spread and bone homeostasis. Calcitriol and its analogues temporarily inhibited the formation of metastases in the lungs. Unexpectedly, only mice treated with calcitriol analogues showed a deterioration of bone-related parameters, such as bone column density, marrow column density and the CaPO4 coefficient. These findings correlated with an increased number of active osteoclasts differentiated from bone marrow-derived macrophages in mice treated with the analogues. Interestingly, in the tumours from mice treated with PRI-2191 and PRI-2205, the expression of Tnfsf11 (RANKL) was increased. On the other hand, osteopontin (OPN) levels in plasma and tumour tissue, as well as TRAC5b levels in tumours, were diminished by calcitriol and its analogues. Despite a similar action of both analogues towards bone metabolism, their impact on vitamin D metabolism differed. In particular, PRI-2191 and calcitriol, not PRI-2205 treatment significantly diminished the levels of both 25(OH)D3 and 24,25(OH)2D3. In conclusion, though there is evident antimetastatic activity in old OVX mice, signs of increased bone metabolism and deterioration of bone mineralization during therapy with calcitriol analogues were observed
    corecore