5 research outputs found

    Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs<sub>3</sub>Sb<sub>2</sub>I<sub>9</sub>

    No full text
    The presence of toxic lead (Pb) remains a major obstruction to the commercial application of perovskite solar cells. Although antimony (Sb)-based perovskite-like structures A<sub>3</sub>M<sub>2</sub>X<sub>9</sub> can display potentially useful photovoltaic behavior, solution-processed Sb-based perovskite-like structures usually favor the dimer phase, which has poor photovoltaic properties. In this study, we prepared a layered polymorph of Cs<sub>3</sub>Sb<sub>2</sub>I<sub>9</sub> through solution-processing and studied its photovoltaic properties. The exciton binding energy and exciton lifetime of the layer-form Cs<sub>3</sub>Sb<sub>2</sub>I<sub>9</sub> were approximately 100 meV and 6 ns, respectively. The photovoltaic properties of the layered polymorph were superior to those of the dimer polymorph. A solar cell incorporating the layer-form Cs<sub>3</sub>Sb<sub>2</sub>I<sub>9</sub> exhibited an open-circuit voltage of 0.72 V and a power conversion efficiency of 1.5%î—¸the highest reported for an all-inorganic Sb-based perovskite

    Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li–S Batteries

    No full text
    In this paper we describe a modified (AEG/CH) coated separator for Li–S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems

    Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li–S Batteries

    No full text
    In this paper we describe a modified (AEG/CH) coated separator for Li–S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems

    Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li–S Batteries

    No full text
    In this paper we describe a modified (AEG/CH) coated separator for Li–S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems

    Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach

    No full text
    Further technological development of perovskite solar cells (PSCs) will require improvements in power conversion efficiency and stability, while maintaining low material costs and simple fabrication. In this Research Article, we describe top-illuminated ITO-free, stable PSCs featuring microcavity structures, wherein metal layers on both sides on the active layers exerted light interference effects in the active layer, potentially increasing the light path length inside the active layer. The optical constants (refractive index and extinction coefficient) of each layer in the PSC devices were measured, while the optical field intensity distribution was simulated using the transfer matrix method. The photocurrent densities of perovskite layers of various thicknesses were also simulated; these results mimic our experimental values exceptionally well. To modify the cavity electrode surface, we deposited a few nanometers of ultrathin MoO<sub>3</sub> (2, 4, and 6 nm) in between the Ag and poly­(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) layers provide hydrophobicity to the Ag surface and elevate the work function of Ag to match that of the hole transport layer. We achieved a power conversion efficiency (PCE) of 13.54% without hysteresis in the device containing a 4 nm-thick layer of MoO<sub>3</sub>. In addition, we fabricated these devices on various cavity electrodes (Al, Ag, Au, Cu); those prepared using Cu and Au anodes displayed improved device stability of up to 72 days. Furthermore, we prepared flexible PSCs having a PCE of 12.81% after incorporating the microcavity structures onto poly­(ethylene terephthalate) as the substrate. These flexible solar cells displayed excellent stability against bending deformation, maintaining greater than 94% stability after 1000 bending cycles and greater than 85% after 2500 bending cycles performed with a bending radius of 5 mm
    corecore