30 research outputs found

    Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples

    Get PDF
    Routine full characterization of Mycobacterium tuberculosis (TB) is culture-based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near point of care. We demonstrate a low-cost DNA extraction method for TB WGS direct from patient samples. We initially evaluated the method using the Illumina MiSeq sequencer (40 smear-positive respiratory samples, obtained after routine clinical testing, and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction was obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. Using an 70 Illumina MiSeq/MiniSeq the workflow from patient sample to results can be completed in 44/16 hours at a reagent cost of £96/£198 per sample. We then employed a non-specific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis BCG strain (BCG), and to combined culture negative sputum DNA and BCG DNA. For flowcell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 hours, with full susceptibility results 5 hours later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of the MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis in direct samples

    Isolation and complete genome sequencing of Mimivirus bombay, a Giant Virus in sewage of Mumbai, India

    Get PDF
    We report the isolation and complete genome sequencing of a new Mimiviridae family member, infecting Acanthamoeba castellanii, from sewage in Mumbai, India. The isolated virus has a particle size of about 435 nm and a 1,182,200-bp genome. A phylogeny based on the DNA polymerase sequence placed the isolate as a new member of the Mimiviridae family lineage A and was named as Mimivirus bombay. Extensive presence of Mimiviridae family members in different environmental niches, with remarkably similar genome size and genetic makeup, point towards an evolutionary advantage that needs to be further investigated. The complete genome sequence of Mimivirus bombay was deposited at GenBank/EMBL/DDBJ under the accession number KU761889

    Estimating fitness by competition assays between drug susceptible and resistant Mycobacterium tuberculosis of predominant lineages in Mumbai, India.

    Get PDF
    BackgroundMulti Drug Resistant Tuberculosis (MDR TB) is a threat to global tuberculosis control. A significant fitness cost has been associated with DR strains from specific lineages. Evaluation of the influence of the competing drug susceptible strains on fitness of drug resistant strains may have an important bearing on understanding the spread of MDR TB. The aim of this study was to evaluate the fitness of MDR TB strains, from a TB endemic region of western India: Mumbai, belonging to 3 predominant lineages namely CAS, Beijing and MANU in the presence of drug susceptible strains from the same lineages.MethodologyDrug susceptible strains from a single lineage were mixed with drug resistant strain, bearing particular non synonymous mutation (rpoB D516V; inhA, A16G; katG, S315T1/T2) from the same or different lineages. Fitness of M.tuberculosis (M.tb) strains was evaluated using the difference in growth rates obtained by using the CFU assay system.Conclusion/significanceWhile MANU were most fit amongst the drug susceptible strains of the 3 lineages, only Beijing MDR strains were found to grow in the presence of any of the competing drug susceptible strains. A disproportionate increase in Beijing MDR could be an alarm for an impending epidemic in this locale. In addition to particular non synonymous substitutions, the competing strains in an environment may impact the fitness of circulating drug resistant strains

    Upregulation of miR-101 during influenza A virus infection abrogates viral life cycle by targeting mTOR pathway

    No full text
    Micro RNAs (miRNAs) are a class of small non-coding single-stranded RNA, which play an important role in modulating host-Influenza A virus (IAV) crosstalk. The interplay between influenza and miRNA interaction is defined by a plethora of complex mechanisms, which are not fully understood yet. Here, we demonstrate that in IAV infected A549 cells, a synchronous increase was observed in the expression of mTOR up to 24 hpi and significant downregulation at 48 hpi. Additionally, NP of IAV interacts with mTOR and modulates the levels of mTOR mRNA and protein, thus regulating the translation of host cell. RNA sequencing and qPCR analysis of IAV-infected A549 cells and NP transfected cells revealed that miR-101 downregulates mTOR transcripts at later stages of infection. Ectopic expression of miR-101 mimic led to a decrease in expression of NP, a reduction in IAV titer and replication. Moreover, treatment of the cells with Everolimus, a potent inhibitor of mTOR, resulted in an increase of miR-101 transcript levels, which further suppressed the viral protein synthesis. Collectively, the data suggest a novel mechanism that IAV stimulates mTOR pathway at early stages of infection; however, at a later time-point, positive regulation of miR-101 restrains the mTOR expression, and hence, the viral propagation

    Whole-genome sequencing of presumptive MDR-TB isolates from a tertiary healthcare setting in Mumbai

    No full text
    ABSTRACT: Objectives: Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB), proven to be a better alternative when compared with the combined sensitivity and specificity of all other modalities for diagnosis of tuberculosis (TB), aids epidemiological surveillance investigations by combining the current research with diagnostics. This study was conducted to identify and resolve operational challenges in performing WGS-based drug resistance testing (DRT) for MTB in a TB culture and drug susceptibility testing (DST) laboratory. Three critical, non-redundant steps for WGS-based DRT were tested: viz. DNA extraction, high-throughput paired-end next-generation sequencing (NGS), and genomic analysis pipeline for automated reporting of WGS-based DRT. Methods: DNA was extracted from 100 liquid culture isolates on a mycobacterial growth indicator tube (MGIT) using DNEASY Ultraclean Microbial Kit (Qiagen, USA) as per the manufacturer's instructions. Illumina paired-end sequencing was performed. All analysis steps were automated using custom python scripts, requiring no intervention. Variant calling was performed as per the World Health Organization (WHO) technical guide. Results: The number of cultures resistant to rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin was 89, 88, 35, 67, and 73, respectively. Resistance to amikacin, kanamycin, and capreomycin was found in 15, 17, and 15 cultures, respectively. Seventy cultures were resistant to fluoroquinolones, four were resistant to ethionamide, and 12 were resistant to linezolid. Six cultures were resistant to only one of the 18 drugs tested. Seventy-five cultures were resistant to more than three anti-TB drugs. One culture was resistant to 13 of the 18 anti-TB drugs tested for this study. The maximum number of variants were observed in the rpoB gene (n = 93, 93%), wherein the Ser450Leu was the predominant mutation (n = 68, 73%). Ser315Thr was the most common variant (n = 86, 97%) that encoded resistance to isoniazid. The Lys43Arg variant encodes resistance to streptomycin and was the third most predominant variant (n = 65, 89%). In addition to the high levels of resistance observed in the dataset, we also observed a high proportion of Beijing strains (n = 63, 63%). Conclusion: Compared with results from routine diagnostics based on the ‘Guidelines on Programmatic Management of Drug-Resistant TB (PMDT) in India’, none of the samples had DST available for all 18 drugs. This represents a gap in PMDT guidelines. The WGS-DRT must be considered as the primary DST method after a sample is flagged rifampicin-resistant by cartridge-based nucleic acid amplification testing (CBNAAT). With several research studies currently underway globally to identify novel variants associated with drug resistance and classifiy their minimum inhibitory coefficients, WGS-DRT presents a scalable technology that updates analytical pipelines, relegating the need for changing microbiological protocols

    Hierarchical clustering.

    No full text
    <p>Hierarchical clustering of genes in (A) MANU1; (B) CAS (C) Beijing.</p

    Global Transcriptional Profiling of Longitudinal Clinical Isolates of <em>Mycobacterium tuberculosis</em> Exhibiting Rapid Accumulation of Drug Resistance

    No full text
    <div><p>The identification of multidrug resistant (MDR), extensively and totally drug resistant Mycobacterium <em>tuberculosis</em> (<em>Mtb</em>), in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS) compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical <em>Mtb</em> isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS) at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S) microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (<em>sig</em>, <em>rpoB</em>), cell wall biosynthesis (<em>emb</em> genes), protein synthesis (<em>rpl</em>) and additional central metabolic pathways (<em>ppdK, pknH, pfkB)</em> were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (<em>whiB</em>) in the MDR isolates was observed. The data indicated that <em>Mtb</em>, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of <em>Mtb</em>, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as <em>drrA</em> may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of <em>Mtb</em> till acquisition of drug resistant mutations with least fitness cost.</p> </div
    corecore