108 research outputs found

    Shrinkage and strength characterizations of concrete containing supplementary cementing materials

    Get PDF
    Considerable differences in drying shrinkage strains and compressive strengths are observed in HPC containing supplementary cementing materials from normal concrete (without any supplementary cementing material). The differences in these properties due to addition of supplementary cementing materials occur because of different quantity of C-S-H gel formation. This limits the application to HPC of standard prediction equation for shrinkage and strength of normal concrete.;Therefore in this study a novel technique has been used to estimate the C-S-H gel for cement pastes containing supplementary cementing materials in varying replacement proportions and combinations. New shrinkage and compressive strength models have been developed using the obtained gel-time relationship for all the combinations. The proposed models were calibrated with the experimental results of concrete made with similar supplementary cementing material and water-cementitious material ratio and was validated with data obtained from different sources

    Modeling of Phase Transformation Kinetics of Plain Carbon Steel

    Get PDF
    A mathematical model have been generated which incorporates the concept of isothermal/isokinetic steps in close association with the cooling curve to predict the transformation kinetics under continuous cooling conditions. Transformation kinetics under actual cooling conditions was predicted by the dilatometric analysis of the 1080 steel samples. The continuous cooling experiments were conducted for cooling rates of 5, 10, 15, 200 K/min to determine the time and temperature for start and end of pearlitic transformation respectively. The isothermal transformation data was also incorporated in the mathematical model to predict the continuous cooling transformation kinetics. The results of the mathematical model agree closely and in a similar manner with the measurements made at the four cooling rates

    Arsenic abrogates the estrogen-signaling pathway in the rat uterus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic, a major pollutant of water as well as soil, is a known endocrine disruptor, and shows adverse effects on the female reproductive physiology. However, the exact molecular events leading to reproductive dysfunctions as a result of arsenic exposure are yet to be ascertained. This report evaluates the effect and mode of action of chronic oral arsenic exposure on the uterine physiology of mature female albino rats.</p> <p>Methods</p> <p>The effect of chronic oral exposure to arsenic at the dose of 4 microg/ml for 28 days was evaluated on adult female albino rats. Hematoxylin-eosin double staining method evaluated the changes in the histological architecture of the uterus. Circulating levels of gonadotropins and estradiol were assayed by enzyme-linked immunosorbent assay. Expression of the estrogen receptor and estrogen-induced genes was studied at the mRNA level by RT-PCR and at the protein level by immunohistochemistry and western blot analysis.</p> <p>Results</p> <p>Sodium arsenite treatment decreased circulating levels of estradiol in a dose and time-dependent manner, along with decrease in the levels of both LH and FSH. Histological evaluation revealed degeneration of luminal epithelial cells and endometrial glands in response to arsenic treatment, along with reduction in thickness of the longitudinal muscle layer. Concomitantly, downregulation of estrogen receptor (ER alpha), the estrogen-responsive gene - vascular endothelial growth factor (VEGF), and G1 cell cycle proteins, cyclin D1 and CDK4, was also observed.</p> <p>Conclusion</p> <p>Together, the results indicate that arsenic disrupted the circulating levels of gonadotropins and estradiol, led to degeneration of luminal epithelial, stromal and myometrial cells of the rat uterus and downregulated the downstream components of the estrogen signaling pathway. Since development and functional maintenance of the uterus is under the influence of estradiol, arsenic-induced structural degeneration may be attributed to the reduction in circulating estradiol levels. Downregulation of the estrogen receptor and estrogen-responsive genes in response to arsenic indicates a mechanism of suppression of female reproductive functions by an environmental toxicant that is contra-mechanistic to that of estrogen.</p

    Studies on Multifunctional Effect of All-Trans Retinoic Acid (ATRA) on Matrix Metalloproteinase-2 (MMP-2) and Its Regulatory Molecules in Human Breast Cancer Cells (MCF-7)

    Get PDF
    Background. Vitamin A derivative all-trans retinoic acid (ATRA) is considered as a potent chemotherapeutic drug for its capability of regulating cell growth and differentiation. We studied the effect of ATRA on MMP-2 in MCF-7, human breast cancer cells, and the probable signaling pathways which are affected by ATRA on regulating pro-MMP-2 activity and expression. Methods. Gelatin zymography, RT-PCR, ELISA, Western blot, Immunoprecipitation, and Cell adhesion assay are used. Results. Gelatin zymography showed that ATRA caused a dose-dependent inhibition of pro-MMP-2 activity. ATRA treatment downregulates the expression of MT1-MMP, EMMPRIN, FAK, NF-kB, and p-ERK. However, expression of E-cadherin, RAR, and CRABP increased upon ATRA treatment. Binding of cells to extra cellular matrix (ECM) protein fibronectin reduced significantly after ATRA treatment. Conclusions. The experimental findings clearly showed the inhibition of MMP-2 activity upon ATRA treatment. This inhibitory effect of ATRA on MMP-2 activity in human breast cancer cells (MCF-7) may result due to its inhibitory effect on MT1-MMP, EMMPRIN, and upregulation of TIMP-2. This study is focused on the effect of ATRA on MMP, MMP-integrin-E-cadherin interrelationship, and also the effect of the drug on different signaling molecules which may involve in the progression of malignant tumor development

    Evaluation the results of surgical management of traumatic paraplegia in traumatic thoracolumbar fractures

    Get PDF
    Background: Thoracolumbar spine fractures are common injuries that can result in significant disability, deformity and neurological deficit. Aim of this study was to evaluate the results of surgical management of traumatic paraplegia, complete or incomplete as classified by Frankel scoring.Methods: A prospective study was conducted in patients attending outdoor and emergency department of Orthopedics of a tertiary care teaching institute in Kolkata, West Bengal with traumatic paraplegia involving the dorsolumbar spine. The important objectives are the time for recovery of various functions like sensory, motor and bowel and bladder function, comparison between early and late decompression, results of posterolateral fusion and time taken for solid bony fusion after operation. Total 46 cases were selected within a minimum of 6-month post-operative follow-up of which 4 cases lost in follow-up. Data collected from patient records included age, sex, time from injury to hospitalization, initial neurological status as per Frankel Score, MRI findings, surgery performed, postoperative course and neurological status at the time of discharge and latest follow up. Patients lost to follow up were not studied for outcome analysis.Results: When decompression done within 1st week in incomplete paraplegia, 80% of the patients showed return of grade 3 power. In complete paraplegia cases, 11% of the patients had return of power up to grade 3 when decompression done within 1 week, where no cases showed return of grade 3 power when decompression done after 2nd or 3rd week.Conclusions: After recovery from spinal shock, the earlier the surgical compression done, the better the neurological and bowel/bladder function recovery both in complete and incomplete paraplegic cases. Reduction is better and easy and less time consuming in early decompression than in late. Motor recovery can continue for over 6 months after decompression

    Assessment of a size-based method for enriching circulating tumour cells in colorectal cancer

    Get PDF
    Circulating tumour cells (CTC) from solid tumours are a prerequisite for metastasis. Isolating CTCs and understanding their biology is essential for developing new clinical tests and precision oncology. Currently, CellSearch is the only FDA (U.S. Food and Drug Administration)-approved method for CTC enrichment but possesses several drawbacks owing to a reliance on the epithelial cell adhesion molecule (EpCAM) and a resource-intensive nature. Addressing these shortcomings, we optimised an existing size-based method, MetaCell, to enrich CTCs from blood of colorectal cancer (CRC) patients. We evaluated the ability of MetaCell to enrich CTCs by spiking blood with CRC cell lines and assessing the cell recovery rates and WBC depletion via immunostaining and gene expression. We then applied MetaCell to samples from 17 CRC patients and seven controls. Recovery rates were \u3e85% in cell lines, with \u3e95% depletion in WBCs. MetaCell yielded CTCs and CTC clusters in 52.9% and 23.5% of the patients, respectively, without false positives in control patients. CTCs and cluster detection did not correlate with histopathological parameters. Overall, we demonstrated that the MetaCell platform enriched CRC cells with high recovery rates and high purity. Our pilot study also demonstrated the ability of MetaCell to detect CTCs in CRC patients

    Methodology Report Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    Get PDF
    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background

    Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    Get PDF
    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background
    corecore