13 research outputs found
When COVID moved work online, it created an opportunity for countries in the global south
IT workers in countries such as Bangladesh will be able to make a living through online freelancer marketplaces, writes Anir Chowdhur
How a2i is using empathy to foster innovation in Bangladesh
Developing countries are often notorious for their inefficient public service delivery. However, the Bangladeshi government is seeking to vastly improve the citizen experience of government services through empathy-led innovation, write Anir Chowdhury and Nick Beresford. This involves arranging for civil servants to act as secret shoppers to identify weaknesses and come up with solutions, often using new technologies
Genomics, social media and mobile phone data enable mapping of SARS-CoV-2 lineages to inform health policy in Bangladesh.
Genomics, combined with population mobility data, used to map importation and spatial spread of SARS-CoV-2 in high-income countries has enabled the implementation of local control measures. Here, to track the spread of SARS-CoV-2 lineages in Bangladesh at the national level, we analysed outbreak trajectory and variant emergence using genomics, Facebook 'Data for Good' and data from three mobile phone operators. We sequenced the complete genomes of 67 SARS-CoV-2 samples (collected by the IEDCR in Bangladesh between March and July 2020) and combined these data with 324 publicly available Global Initiative on Sharing All Influenza Data (GISAID) SARS-CoV-2 genomes from Bangladesh at that time. We found that most (85%) of the sequenced isolates were Pango lineage B.1.1.25 (58%), B.1.1 (19%) or B.1.36 (8%) in early-mid 2020. Bayesian time-scaled phylogenetic analysis predicted that SARS-CoV-2 first emerged during mid-February in Bangladesh, from abroad, with the first case of coronavirus disease 2019 (COVID-19) reported on 8 March 2020. At the end of March 2020, three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity in Bangladesh, combined with the mobility data, revealed that the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka (the capital of Bangladesh) and the rest of the country, disseminated three dominant viral lineages. Further analysis of an additional 85 genomes (November 2020 to April 2021) found that importation of variant of concern Beta (B.1.351) had occurred and that Beta had become dominant in Dhaka. Our interpretation that population mobility out of Dhaka, and travel from urban hotspots to rural areas, disseminated lineages in Bangladesh in the first wave continues to inform government policies to control national case numbers by limiting within-country travel
Modelling how face masks and symptoms-based quarantine synergistically and cost-effectively reduce SARS-CoV-2 transmission in Bangladesh
Background:
Non-pharmaceutical interventions (NPIs) used to limit SARS-CoV-2 transmission vary in their feasibility, appropriateness and effectiveness in different contexts. In Bangladesh a national lockdown implemented in March 2020 exacerbated poverty and was untenable long-term. A resurgence in 2021 warranted renewed NPIs. We sought to identify NPIs that were feasible in this context and explore potential synergies between interventions.
Methods:
We developed an SEIR model for Dhaka District, parameterised from literature values and calibrated to data from Bangladesh. We discussed scenarios and parameterisations with policymakers with the aid of an interactive app. These discussions guided modelling of lockdown and two post-lockdown measures considered feasible to deliver; symptoms-based household quarantining and compulsory mask-wearing. We compared NPI scenarios on deaths, hospitalisations relative to capacity, working days lost, and cost-effectiveness.
Results:
Lockdowns alone were predicted to delay the first epidemic peak but could not prevent overwhelming of the health service and were costly in lost working days. Impacts of post-lockdown interventions depended heavily on compliance. Assuming 80% compliance, symptoms-based household quarantining alone could not prevent hospitalisations exceeding capacity, whilst mask-wearing prevented overwhelming health services and was cost-effective given masks of high filtration efficiency. Combining masks with quarantine increased their impact. Recalibration to surging cases in 2021 suggested potential for a further wave in 2021, dependent on uncertainties in case reporting and immunity.
Conclusions:
Masks and symptoms-based household quarantining synergistically prevent transmission, and are cost-effective in Bangladesh. Our interactive app was valuable in supporting decision-making, with mask-wearing being mandated early, and community teams being deployed to support quarantining across Dhaka. These measures likely contributed to averting the worst public health impacts, but delivering an effective response with consistent compliance across the population has been challenging. In the event of a further resurgence, concurrent messaging to increase compliance with both mask-wearing and quarantine is recommended
Recommended from our members
Participatory syndromic surveillance as a tool for tracking COVID-19 in Bangladesh.
Limitations in laboratory diagnostic capacity and reporting delays have hampered efforts to mitigate and control the ongoing coronavirus disease 2019 (COVID-19) pandemic globally. To augment traditional lab and hospital-based surveillance, Bangladesh established a participatory surveillance system for the public to self-report symptoms consistent with COVID-19 through multiple channels. Here, we report on the use of this system, which received over 3 million responses within two months, for tracking the COVID-19 outbreak in Bangladesh. Although we observe considerable noise in the data and initial volatility in the use of the different reporting mechanisms, the self-reported syndromic data exhibits a strong association with lab-confirmed cases at a local scale. Moreover, the syndromic data also suggests an earlier spread of the outbreak across Bangladesh than is evident from the confirmed case counts, consistent with predicted spread of the outbreak based on population mobility data. Our results highlight the usefulness of participatory syndromic surveillance for mapping disease burden generally, and particularly during the initial phases of an emerging outbreak
Participatory syndromic surveillance as a tool for tracking COVID-19 in Bangladesh.
Limitations in laboratory diagnostic capacity and reporting delays have hampered efforts to mitigate and control the ongoing coronavirus disease 2019 (COVID-19) pandemic globally. To augment traditional lab and hospital-based surveillance, Bangladesh established a participatory surveillance system for the public to self-report symptoms consistent with COVID-19 through multiple channels. Here, we report on the use of this system, which received over 3 million responses within two months, for tracking the COVID-19 outbreak in Bangladesh. Although we observe considerable noise in the data and initial volatility in the use of the different reporting mechanisms, the self-reported syndromic data exhibits a strong association with lab-confirmed cases at a local scale. Moreover, the syndromic data also suggests an earlier spread of the outbreak across Bangladesh than is evident from the confirmed case counts, consistent with predicted spread of the outbreak based on population mobility data. Our results highlight the usefulness of participatory syndromic surveillance for mapping disease burden generally, and particularly during the initial phases of an emerging outbreak