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A B S T R A C T   

Background: Non-pharmaceutical interventions (NPIs) used to limit SARS-CoV-2 transmission vary in their 
feasibility, appropriateness and effectiveness in different contexts. In Bangladesh a national lockdown imple
mented in March 2020 exacerbated poverty and was untenable long-term. A resurgence in 2021 warranted 
renewed NPIs. We sought to identify NPIs that were feasible in this context and explore potential synergies 
between interventions. 
Methods: We developed an SEIR model for Dhaka District, parameterised from literature values and calibrated to 
data from Bangladesh. We discussed scenarios and parameterisations with policymakers with the aid of an 
interactive app. These discussions guided modelling of lockdown and two post-lockdown measures considered 
feasible to deliver; symptoms-based household quarantining and compulsory mask-wearing. We compared NPI 
scenarios on deaths, hospitalisations relative to capacity, working days lost, and cost-effectiveness. 
Results: Lockdowns alone were predicted to delay the first epidemic peak but could not prevent overwhelming of 
the health service and were costly in lost working days. Impacts of post-lockdown interventions depended 
heavily on compliance. Assuming 80% compliance, symptoms-based household quarantining alone could not 
prevent hospitalisations exceeding capacity, whilst mask-wearing prevented overwhelming health services and 
was cost-effective given masks of high filtration efficiency. Combining masks with quarantine increased their 
impact. Recalibration to surging cases in 2021 suggested potential for a further wave in 2021, dependent on 
uncertainties in case reporting and immunity. 
Conclusions: Masks and symptoms-based household quarantining synergistically prevent transmission, and are 
cost-effective in Bangladesh. Our interactive app was valuable in supporting decision-making, with mask- 
wearing being mandated early, and community teams being deployed to support quarantining across Dhaka. 
These measures likely contributed to averting the worst public health impacts, but delivering an effective 
response with consistent compliance across the population has been challenging. In the event of a further 
resurgence, concurrent messaging to increase compliance with both mask-wearing and quarantine is 
recommended.   

1. Introduction 

During the early stages of the COVID-19 pandemic, countries around 
the world turned to a range of non-pharmaceutical interventions (NPIs) 

to limit transmission. These measures included improved hygiene 
practices, social distancing, contact tracing, travel restrictions, quaran
tines, shielding of the vulnerable, lockdowns of differing severity, and 
facemasks. For a variety of reasons, some of these measures may be less 
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effective or more difficult to maintain in low- and middle-income 
countries (LMICs). Vaccines came into play in 2021, but rollout has 
been slow in LMICs. With negligible vaccination coverage and only NPIs 
to mitigate impacts, LMICs have faced subsequent epidemic waves of 
faster-spreading variants with possibly little protective immunity from 
prior infections (Cele et al., 2021; Planas et al., 2021). 

Lockdowns can effectively control COVID-19 transmission (Flaxman 
et al., 2020). However, they also exacerbate poverty (Amewu et al., 
2020; Andam et al., 2020) and risk food security, whilst poor adherence 
limits their effectiveness. Social distancing may be impractical in 
densely populated areas (Anwar et al., 2020; Chowdhury et al., 2020; 
Gupta et al., 2020), and in urban slums and refugee camps, where 
cramped conditions and poor healthcare access co-occur (Ahmed et al., 
2020; Truelove et al., 2020). Shielding the most vulnerable, is also 
challenging in multi-generational households (Hodgins and Saad, 2020; 
Lloyd-Sherlock et al., 2020; United Nations, Department of Economic 
and Social Affairs, 2019a). Contact tracing is limited by testing capa
bilities (facilities, trained personnel, consumables, reagents and 
biosafety) (Anwar et al., 2020; Homaira et al., 2020; Rahaman et al., 
2020) and information management capacity. Moreover, in settings 
where healthcare resources are already stretched, there is limited ability 
to temporarily increase capacity to deal with sudden increases in patient 
volume (Torres-Rueda et al., 2020). The impact of COVID-19, however, 
may be mitigated in LMICs by the relatively younger populations with 
fewer underlying risk factors, meaning that a smaller proportion of cases 
are likely to be severe relative to high-income countries (HICs) (Clark 
et al., 2020; Gupta et al., 2020; Hodgins and Saad, 2020). More gener
ally, the wider social and economic consequences of NPIs may trade off 
against their impact on controlling disease, and the structure and un
derlying health of populations may impact the shape of this trade-off 
(Reidpath et al., 2020). Hence, there was an urgent need for the 
development and implementation of contextually appropriate in
terventions that take into account the population that they target 
(Hodgins and Saad, 2020). 

During the pandemic, epidemiological models have received 
increased attention from governments and the public alike, and have 
influenced policy decisions worldwide (McBryde et al., 2020). However, 
a translational gap persists between policymakers and the scientists 
working on these models. Early in the pandemic, this gap was exacer
bated by uncertainties about the biology and transmission of 
SARS-CoV-2, and continually compounded by limited understanding of 
and changes in people’s behaviour. As a consequence, there was often 
simultaneously both overconfidence in, and mistrust of, models. Ideally, 
policymakers, scientists and communities should work together to 
develop and implement locally appropriate interventions. By empow
ering decision makers to better understand the mechanisms underpin
ning the timescales and magnitude over which interventions lead to 
impact, as well as the uncertainties and social and behavioural factors 
that affect their efficacy, co-created models can inform short- and 
longer-term policies. 

Cases of COVID-19 were first confirmed in Bangladesh on the 8th 
March 2020, and NPIs were subsequently introduced, beginning with 
postponements to mass gatherings, followed by international travel re
strictions, and culminating in a national lockdown (announced as a 
‘general holiday’) from 26th March (Ahmed et al., 2020; Anwar et al., 
2020). The lockdown had swift economic repercussions: around 60% of 
households lost their main income source, the majority of previously 
vulnerable non-poor households slipped below the poverty line, and 
food security declined (Rahman et al., 2020). The nationwide lockdown 
was quickly recognized as untenable long-term (ultimately ending on 1st 
June 2020). 

With input from policymakers on the feasibility of implementation, 
we developed an SEIR model to compare post-lockdown NPIs on: (1) 
their ability to reduce deaths and hospitalisations; and (2) both their 
cost-effectiveness to the health provider and their cost in terms of 
working days lost (one of many societal costs of the pandemic and 

associated control efforts). In particular, we sought to identify potential 
synergies between different measures. We also explored the conse
quences of long scale-up periods or delays in implementing in
terventions, and designed an associated interactive app within which 
policymakers could explore the NPI scenarios to gain an understanding 
of how the model worked and how uncertainties may influence out
comes. Finally, we examined scenarios following resurgence of cases 
and a renewed lockdown in March 2021. 

2. Methods 

2.1. Model description 

We developed a deterministic SEIR model comprising a set of ordi
nary differential equations (ODEs) to describe SARS-CoV-2 transmission 
in Dhaka District, the most densely populated district in Bangladesh. 
Dhaka District includes rural areas in addition to the city area itself, but, 
as case data were resolved to district level, we consider the full district 
population, rather than restricting analyses to the city population. 

The model includes three infectious states, with latently infected 
individuals either becoming pre-symptomatically infectious (Ip) before 
progressing to symptomatic infection (Is), or becoming asymptomati
cally infectious (Ia) until their recovery (Fig. 1). Susceptible individuals 
are exposed to SARS-CoV-2 according to transmission rates specific to 
each infectious state (βa, βp and βs). These rates are based on: (1) 
asymptomatic individuals producing 65% of the secondary infections 
produced by pre-symptomatic-to-symptomatic individuals (Yi et al., 
2020); (2) 35% of secondary infections from pre-symptomatic- 
to-symptomatic individuals happening in the pre-symptomatic period 
(Liu et al., 2020); and (3) the value of R0: 

R0 = f aβada +(1 − f a)(βpdp + βsds)

where da = 7, dp = 2 and ds = 7 are the mean durations (in days) of each 
infectious state (Byrne et al., 2020; Hu et al., 2020), and fa is the pro
portion of infections that are asymptomatic (Supplementary Table S4). 
Recovered individuals are considered to be immune. SEIR models have 
been widely used in the COVID-19 pandemic, though there has been 
some variation in the modelling of the infectious classes, with some 
using the same three classes described here (Davies et al., 2020b), while 
others do not break down the pre-symptomatic and symptomatic classes 
(Keeling et al., 2021) or use more complex infectious structures (Jaya
sundara et al., 2021). 

We track numbers of both general and Intensive Care Unit (ICU) beds 
required by COVID-19 patients, and deaths due to COVID-19 (Fig. 1). A 
proportion of individuals fH(1 − f ICU) that leave the pre-symptomatic 
state join a holding category prior to progressing to general hospital 
beds, while a second proportion fHf ICU enters a holding category prior to 
entering ICU beds. Individuals remain in these two holding categories 
from the first appearance of symptoms until the point at which hospi
talisation is required; on average 7 days (Liang et al., 2020; Linton et al., 
2020). A third holding category retains a proportion of individuals fD 

from the first appearance of symptoms until death, on average 20.2 days 
later (Linton et al., 2020; Verity et al., 2020). While we assume no 
overlap between the groups in ICU versus general hospital beds, overlap 
between those that die and the hospitalized groups is both permitted and 
expected. On leaving hospital, after a mean of 5 days for general beds 
and 7 days for ICU (Rees et al., 2020), recovered individuals recuperate 
for an average of 3 weeks before resuming work, if employed (Halpin 
et al., 2020). The number of individuals in the seven health outcome 
states has no impact on transmission dynamics, and it is assumed that 
there is no impact of a lack of hospital beds on the COVID-19 death rate. 
This approach to modelling health outcomes outside of the main 
transmission model is similar to that described in several other 
COVID-19 models (Davies et al., 2020b; Keeling et al., 2021). Other 
models include hospitalised patients as infectious categories integrated 

E.A. Ferguson et al.                                                                                                                                                                                                                             



Epidemics 40 (2022) 100592

3

into the progression from susceptible to removed (Aleta et al., 2020; 
Jayasundara et al., 2021; Kerr et al., 2021). 

We use data on the age structure of the Dhaka population 
(Bangladesh Bureau of Statistics, 2011) (Supplementary Table S1) to 
inform parameters describing the risks of SARS-CoV-2 infections. Pre
viously estimated age-specific risks of hospitalisation and death due to 
COVID-19 (Davies et al., 2020b), and of developing symptoms (Davies 
et al., 2020a) (Supplementary Table S2), were combined with the age 
distribution in Dhaka District, to estimate the overall proportions of (1) 
asymptomatic infections, fa = 0.701, (2) symptomatic infections that 
lead to death, fD = 0.009, and (3) symptomatic infections requiring 
hospitalisation, fH = 0.073. Of those hospitalised we assume that the 
proportion requiring critical care in an ICU is f ICU = 0.31 (World Health 
Organisation (WHO), 2020a). We assumed no age-structure in contacts 
within our model. 

The model was initially developed as an interactive epidemiological 
teaching tool (http://boydorr.gla.ac.uk/BGD_Covid-19/CEEDS/), to 
allow policymakers to explore the impact of interventions on health 
outcomes and working days lost. For speed and efficiency, and given the 
large population (Dhaka District population in 2020 was around 13.8 
million (Bangladesh Bureau of Statistics, 2011; United Nations, 
Department of Economic and Social Affairs, 2019b)), the decision was 
made to make the model deterministic rather than stochastic. We 
minimise computational complexity by modelling transmission at the 
population level rather than at the level of the individual or household. 
However, to more accurately model household quarantining, we further 
subdivide the six disease states (Fig. 1) to track within-household 
transmission and account for household-level susceptible depletion 

(Supplement A). 
The ODEs comprising the model are provided in Supplement A and 

the model parameter descriptions, values and sources, are listed in 
Supplementary Table S4. Analyses were implemented in R (R Core 
Team, 2021), with the ODEs numerically integrated using the package 
deSolve (Soetaert et al., 2010). Code can be accessed from our Github 
repository (https://github.com/boydorr/BGD_Covid-19/tree/main/BG 
D_NPI_model). 

2.2. Interventions 

We implemented three main NPIs – lockdown, household quaran
tining delivered through Community Support Teams (CSTs), and mask 
wearing – that were considered to be feasible by policymakers in 
Bangladesh. 

We define a lockdown as a scenario where all except essential 
workplaces are closed, including educational facilities, and people are 
asked to stay home where possible and practice social distancing. For 
compliant individuals and those that are not essential workers, this 
intervention is assumed to reduce contacts, and therefore transmission, 
outside of the household by the proportion εld, while leaving within- 
household transmission unchanged. We achieve this by breaking down 
the transmission rates for the three infectious states into within- and 
between-household components using estimates of the SARS-CoV-2 
household secondary attack rate, σ = 0.166 (Madewell et al., 2020), 
and the mean household size, η = 4 (Bangladesh Bureau of Statistics, 
2017). We considered a scale-up period for the lockdown, during which 
compliance increased linearly from zero to a maximum. Following 
scale-up, we assume compliance starts to decline sigmoidally towards a 

Fig. 1. Model schematic illustrating the movement of individuals between classes. Coloured circles indicate disease states that impact transmission. Grey circles 
describe health outcomes that are tracked but have no impact on disease transmission. 
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minimum. Full details of the lockdown compliance function are given in 
Supplement A (eq. (S.6)). 

Under the household quarantine intervention, when a symptomatic 
individual occurs, that individual’s entire household is required to 
quarantine for 14 days. Those who develop symptoms can self-report to 
a national COVID-19 hotline or are identified by word-of-mouth, trig
gering a visit by CST, a volunteer workforce of community-based sup
port workers trained by BRAC/FAO. The CST confirm that symptoms are 
consistent with COVID-19, provide information on how to limit spread, 
facilitate access to healthcare, and offer support to aid quarantine 
compliance, with additional follow-up during the quarantine period. 

Incorporating household quarantine into models can be achieved far 
more naturally in the realm of agent-based models, where individuals 
can be explicitly assigned to households (Aleta et al., 2020; Ferguson 
et al., 2020). Here, similarly to Keeling et al., (2021), we approximate 
household quarantine by sub-dividing the disease states into additional 
categories, but with some changes to allow inclusion of a 
pre-symptomatic infectious class. We also remove the assumption that 
only the first individual in a household transmits. Modelling household 
quarantine requires us to identify both those individuals that trigger 
quarantining (the first symptomatic individuals within households), and 
other individuals in their households who also undergo quarantine. We 
subdivide the disease states to identify those not currently in an infected 
household, those in a non-quarantined infected household, and those in 
a quarantined household. When a susceptible individual in an unin
fected household becomes latently infected (through 
between-household transmission), η − 1 other individuals also move 
from uninfected household categories into categories that identify them 
as being in a non-quarantined infected household, making them 
vulnerable to both within-household and between-household trans
mission. We track the group of individuals who were the first infected 
within a household separately to those who subsequently became 
infected, allowing us to observe when household index cases become 
symptomatic. A proportion of these symptomatic index cases comply 
with quarantine, taking η − 1 individuals from non-quarantined infected 
households with them. We also trigger quarantines when 
within-household cases resulting from index asymptomatic cases 
become symptomatic. The equations generating these dynamics are 
described in Supplement A. Infectious individuals within quarantined 
households are assumed to not cause any between-household trans
mission. As with lockdown, household quarantining with CST support 
has defined start and end times, and the proportion of households that 
are compliant increases linearly through a scale-up period. Following 
the scale-up period, compliance remains at a constant maximum (see 
Supplement A). 

Finally, we considered compulsory mask-wearing outside of the 
household. Within the model, masks are assumed to block a proportion, 
εm, of between-household transmission from compliant individuals, 
while also blocking a proportion, εmρm, of transmission to compliant 
individuals, where 0 ≤ ρm ≤ 1, i.e. masks protect others from the 
wearer, and the wearer from others, to different degrees, with protection 
provided to the wearer never greater than that provided to others 
(Howard et al., 2020; Stutt et al., 2020). We assume a linear scale-up 
period for mask use, after which compliance remains constant (Sup
plement A). We do not consider a decline in compliance over time for 
household quarantine and masks, since, unlike lockdown, these mea
sures do not cause long-term loss of income, and should be possible to 
maintain with continued promotion. We recognise, however, that 
erosion of compliance may occur in reality as a result of, for example, 
reduced perception of risk. 

We model working days lost due to both illness and interventions. 
Based on the 2011 census (Bangladesh Bureau of Statistics, 2011), we 
assume 52% of the population is formally employed, working five days a 
week. We assume that both symptomatic and recuperating individuals 
are unable to work, and that deaths result in loss of all subsequent 
working days through 2020. During lockdown, those workers that are 

both compliant and not essential workers lose their working days. Those 
in quarantined households do not work, and, since household quaran
tine is based on symptoms, we assume that, in addition to those quar
antined due to COVID-19, a proportion of households affected by 
non-COVID-19 influenza-like illnesses also undergo quarantine. Based 
on the 2011 census, 23% of the population is unemployed, but works 
within the household, e.g. with caring responsibilities (Bangladesh Bu
reau of Statistics, 2011). When these individuals are hospitalised or die, 
we assume another (possibly formally employed) household member 
replaces them, leading to further loss of working days. Finally we as
sume that, in response to each death, a number of grieving individuals 
(taken to be η − 1) do not work for a week. Details of the working days 
lost calculation are provided in eqs. S.16–17 in Supplement A. 

2.3. Scenario comparison 

For each intervention, and combination of interventions, we fully 
explored with policymakers in real-time the impact of different timings 
of implementation, scale-up periods, and levels of compliance. Here, we 
describe just 15 combinatorial scenarios for 2020, including a baseline 
with no interventions and unmitigated SARS-CoV-2 spread. 

The first of four lockdown-only scenarios aimed to replicate the 
lockdown as implemented, from 26th March until 1st June 2020. The 
other three lockdown-only scenarios involved extending the lockdown 
by 1, 2 and 3 months. Despite their impracticality, these extended 
lockdowns allow comparison with more feasible scenarios. Google 
community mobility data (Google, 2021) were used to parameterise the 
function describing changes in lockdown compliance with time (see 
Supplement B for details). The estimated parameters indicate that the 
lockdown did not have an initial scale-up, with compliance being very 
high (93%) from the first day. However, the estimated compliance 
declined rapidly thereafter and was only 42% by the lockdown’s end 
(Supplementary Fig. S2D). The impact of lockdown on between- 
household transmission of compliant individuals εld was estimated 
during model calibration (see below). 

We also examined scenarios where lockdown, as implemented in 
Bangladesh, was followed by either CST interventions, compulsory 
mask-wearing, or both; beginning a week before lockdown ended and 
continuing through 2020 with a 7-day scale-up period and 80% peak 
compliance with each intervention. The ability of masks both to protect 
others from transmission from the wearer and to protect the wearer from 
transmission from others depends on several variables, including the 
material used, the construction (e.g. layers of material), and the quality 
of fit (Aydin et al., 2020; Davies et al., 2013; Howard et al., 2020). 
Therefore, for mask-wearing we consider scenarios where there is low, 
medium, and high protection of others from the wearer (εm = {0.2,0.5,
0.8}), and where the protection provided to the wearer is zero, half that 
provided to others, or equal to that provided to others (ρm = {0,0.5,1}), 
giving nine mask-wearing scenarios. 

For the 2020 time horizon we compared the total: (1) hospital
isations, (2) deaths, (3) percentage of patient days exceeding hospital 
capacity (the sum of patients in excess of hospital beds each day, divided 
by the summed total patients over all days), (4) working days lost, (5) 
cost of implementing interventions and of healthcare for COVID-19 
patients, (6) cost per death averted (relative to no intervention), and 
(7) the percentage return (in terms of healthcare savings) on investment 
(%ROI) in interventions. For estimating total cost we include healthcare 
provision for hospitalised COVID-19 patients, media campaigns, 
training and deployment of CSTs, and mask distribution, as detailed in  
Table 1. Note that these costs include only the direct monetary costs to 
health provider, and not any of the wider economic or societal costs of 
the pandemic and interventions to, for example, businesses, employ
ment, trade, etc.; many of which may persist long after initial pandemic 
waves. For each scenario, we used the total cost to estimate the cost per 
death averted. This was calculated by subtracting the cost of the baseline 
scenario from that of the focal scenario, then dividing by the reduction 
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in deaths from the baseline. The %ROI for each scenario was calculated 
by subtracting the total cost of each scenario from the baseline, and 
dividing by the intervention implementation costs (i.e. the sum of all 
costs other than hospital care). 

Given the heavy societal and economic costs of lockdowns, they are 
typically viewed as temporary measures to buy time for implementation 
of other less restrictive measures (e.g. mask wearing) or more targeted 
measures (e.g. household quarantines and contact tracing). To explore 
the impact of preparedness prior to lockdown ending, we examined the 
sensitivity of model outcomes (hospitalisations, deaths, working days 
lost, and exceeded hospital capacity) to the scale-up period and start 
date of post-lockdown interventions. Modelling lockdown as imple
mented in Bangladesh, we looked at scenarios where lockdown was 
followed by household quarantining only, mask-wearing only (assuming 
mask protectiveness parameters εm = 0.5 and ρm = 0.5), or both. We 
varied the start date of the post-lockdown intervention(s) from 30 days 
pre- to 30 days post-lockdown ending, while keeping the scale-up period 
constant at 7 days, and vice versa varying the scale-up period (zero to 30 
days), while keeping the start constant (7 days prior to the lockdown 
end). 

2.4. Model calibration 

We calibrated two parameters, R0 and εld (the proportion by which 
lockdown reduces between-household transmission from compliant 
people), against daily COVID-19 death data in Bangladesh (European 
Centre for Disease Prevention and Control, 2020). We chose to calibrate 
against reported deaths rather than cases, since death data are less 
affected by testing and reporting capacity. To obtain a time-series of 
deaths in Dhaka District, we extracted the proportion of district-resolved 
case totals for Dhaka District from Bangladesh’s COVID-19 dashboard 

("Coronavirus COVID-19 Dashboard, 2020,” 2020) and assumed this 
proportion remained constant. The first three cases in Bangladesh were 
confirmed on 8th March 2020, but it is thought likely that infection 
began circulating undetected prior to this, with genomic data indicating 
an introduction in mid-February and at least eight introduced cases prior 
to the ban on international travel (Cowley et al., 2021). We therefore 
initialise the model with eight infectious cases on 15th February 2020. 
The value of R0 was optimised to minimise the sum of squared differ
ences between modelled and reported cumulative deaths on each day 
during the period from first detection (8th March) to the start of lock
down (26th March). Following this optimisation of R0, the value of εld 

was similarly estimated by minimizing the sum of squared differences 
between modelled deaths and data during the period the lockdown was 
in operation. 

We recalibrated the model to data from the rapid resurgence 
beginning in March 2021 to learn about the likely R0 at that time, when 
Beta (B.1.351) increased in frequency to become the dominant virus 
variant (Saha et al., 2021a). These data were curated from a range of 
sources, including both data aggregating websites and national gov
ernment health departments (Dong et al., 2020), and were accessed 
using the ‘coronavirus’ package in R (Krispin and Byrnes, 2021). In 
March 2021, levels of mask-wearing and compliance with household 
quarantine were low, and there was no lockdown in place. As cases 
increased, a loose lockdown was introduced on 5th April, with stronger 
restrictions applied on 14th April. The lockdown was maintained until 
23rd May, with some relaxing of restrictions over this period. We 
modelled this with a lockdown from 5th April to 23rd May, with a 9-day 
scale-up period, maximum compliance of 80%, and the same rate of 
declining compliance as in 2020 (Supplementary Fig. S1C). We also 
assume that from 5th April to 23rd May 2021 there are low levels of both 
mask-wearing (with εm = 0.5 and ρm = 0.5) and household quarantine, 
with a scale-up period of 9 days to reach a compliance of 20%. Some 
loose social distancing measures were maintained beyond 23rd May, but 
the vast majority of workplaces were open by this point, so we do not 
consider these to constitute a continuation of lockdown. 

There was considerable uncertainty around the number of infectious 
and immune individuals in the population at the time of the March 2021 
resurgence, so we calibrated the model under a range of initialisation 
scenarios in terms of immunity levels and circulating cases on 1st March. 
A cross-sectional study from late 2020 to early 2021 in slum and slum- 
adjacent areas of Dhaka indicated 71% seroprevalence (icddrb, 2021), 
while a study in mid-2020 indicated a similar 74% seroprevalence in 
slums, but only 45% seroprevalence overall in Dhaka city (icddrb, 
2020). Given that antibodies from previous COVID-19 infections are less 
protective against the Beta variant (Planas et al., 2021), the immunity to 
this variant in March 2021 may have been considerably lower than the 
seroprevalence. We, therefore, considered initialisation scenarios of 
20%, 40% and 60% immunity when estimating R0. 

At the end of the initial lockdown period in mid-2020, reported cases 
in Bangladesh were 6% of those estimated by our model (Supplementary 
Fig. S2C), and we assume that this 6% case detection still holds in March 
2021. We further assume that prevalent infectious individuals were 
about eight times estimated incident daily cases given the infectious 
period duration. Dividing by two, assuming that these individuals are on 
average halfway through their infectious period, we get an effective 
number of 19,086 infectious individuals for initialization, and assume 
an equivalent number of incubating individuals. We also considered 
numbers of initial infections 50% higher and lower than this estimate to 
allow for error. 

In the results, we refer to 2021 R0 estimates obtained under the as
sumptions of 19,086 circulating cases and a moderate 40% immunity as 
our ‘best guess’ estimates, since, while error-prone, these assumptions 
best reflect our limited knowledge of the situation at that time. We took 
two approaches to optimisation of R0 in the 2021 resurgence, mini
mizing: (1) the sum of squared differences between modelled and 

Table 1 
Direct costs associated with healthcare and implementation of interventions, 
derived from ongoing practices in Bangladesh.  

Item Description of activities Costs (USD) 

Hospital care Provision of hospital beds and 
associated care (mechanical 
ventilation, oxygen etc.) for 
severely ill COVID-19 patients. 

$649/week/ICU patient; 
$266/week/non-ICU 
patient. 

Community 
Support Team 
(CST) package 

The CST package covers:   
– community health worker 

training (both initial training 
and one refresher training 
session for each volunteer in 
2020) and equipment  

– monthly allowance per 
volunteer, area manager and 
coordinator, covering 
honorarium, phone credit, 
and travel. 

Each volunteer can visit 20–40 
quarantining households per 
day. Plans were to train 2000 
volunteers; deemed sufficient to 
cover the Dhaka District 
population. An area manager is 
assumed for every 25–26 
volunteers (78 total), and a 
coordinator for every 3–4 area 
managers (22 total). 

$466/volunteer trained 
and equipped; 
$8,470 one-time cost for 
telemedicine training for a 
subset of volunteers; 
$151 allowance/month/ 
volunteer; 
$253 allowance/month/ 
area manager; 
$447 allowance/month/ 
coordinator; 
$8,962/month advertising 
cost. 

Masks An average of 5 re-usable cloth 
masks was provided to each 
household in Dhaka District. 
Mask wearing was promoted 
through a public awareness 
campaign. 

$1/mask; 
$8,962/month advertising 
cost. 

Lockdown Public awareness campaign to 
encourage people to remain at 
home and practice social 
distancing. 

$8,962/month advertising 
cost.  
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reported cumulative deaths on each day over the period from 1st March- 
5th April 2021 (the same approach taken for 2020 calibration), and (2) 
the difference in timing of the peaks in reported cases and modelled 
symptomatic cases (with the constraint that modelled cumulative deaths 
from 1st March until 20th May had to be at least as high as reported 
deaths over the same period). By matching peak timing, rather than 
death data, we sought to reveal any potential under-reporting of COVID- 
19 related deaths. This second optimisation approach could not be used 
in the 2020 calibration, since to fit R0 and εld separately, we had to fit R0 
using only data that fell before the lockdown start date, prior to the peak 
in cases. 

2.5. Sensitivity analyses 

There is considerable uncertainty in the parameters governing SARS- 
CoV-2 transmission and health impacts. We therefore undertook one- 
way sensitivity analyses across parameter value ranges for R0, the 
duration of disease states and health outcome stages, the introduction 
date, the household secondary attack rate, the ratios of asymptomatic to 
symptomatic transmission, and of pre- versus symptomatic transmission 
identified as plausible from the literature (see Supplementary Table S4 
for the parameter ranges considered and their sources). The impact of 
changes in each of these parameters on the main model outputs was 
assessed individually, while keeping other parameter values fixed. We 
ran this analysis over scenarios of: (1) no interventions; (2) lockdown as 
implemented; (3) lockdown plus household quarantining; and (4) 
lockdown plus compulsory mask wearing (with εm = 0.5 and ρm = 0.5). 

3. Results 

3.1. Model calibration 

We estimated that R0 = 3.51 for transmission of SARS-CoV-2 in 
Dhaka in 2020, and that the lockdown reduced between-household 
transmission (εld) by 76% for compliant individuals. The match be
tween modelled deaths and data during the early stages of the epidemic 
is illustrated in Supplementary Fig. S2A-B. Output from the calibrated 
model indicated that around 6% of total cases were recorded during the 
period from SARS-CoV-2 introduction to the end of the first lockdown 
(Supplementary Fig. S2C). 

Our estimates of R0 in 2021 (associated with the second wave caused 
by the Beta variant) varied based on the initialisation scenario, with 
values increasing with lower initial circulating cases and higher levels of 
immunity in the population (Supplementary Table S5). The approach 
used to optimise R0 also impacted the estimates, with optimisation based 
on matching to deaths in the early stages of the resurgence leading to 
lower values (range of 2.13–6.78) compared to peak matching (range of 
4.18–8.52). Our best guess initialisation scenario (19,086 initial in
fections and 40% prior immunity), led to an R0 estimate of 3.46 when 
matching to deaths and 5.58 when matching to peak timing. Death 
detection estimates were in the range 32–119% (matching to deaths), or 
11–31% (peak matching). The peak in symptomatic cases obtained by 
matching to deaths was always slightly later than the peak in reported 
cases, though never by more than four days. When calibrated to the 
trajectory of deaths, the model predicted that while NPIs in April-May 
2021 initially controlled the resurgence, another peak would occur in 
the following months following their relaxation (Supplementary 
Fig. S3C). In contrast, calibration by matching peak timing leads to the 
prediction that the resurgence would sufficiently spread through the 
remaining susceptible population to prevent further waves (Supple
mentary Fig. S3D). Subsequent data showed that a third larger COVID- 
19 wave caused by the Delta variant did in fact occur, with deaths rising 
again from late May/early June. The best visual match to the timing and 
size of both the second and third waves is given by fitting R0 to death 
data, with an initial infectious of 19,086 and initial immunity of 

20–40%. Many of the other fits to the death data were considerably 
poorer, likely because the assumptions of initial numbers of infectious 
and immune individuals were too far from reality. 

3.2. Impacts of scenarios on health outcomes and working days lost 

In the absence of interventions we predicted that COVID-19 patients 
in 2020 would peak at 45,664 in late May (Fig. 2A), greatly exceeding 
hospital bed capacity (estimated to be 10,947 in Dhaka District (World 
Health Organisation (WHO), 2020b); Supplementary Table S4). Under 
this scenario, hospital beds would have been unavailable for at least 
55% of patient days (Fig. 3D), without accounting for non-COVID-19 
bed needs. Assuming unmitigated transmission, the epidemic would 
have likely led to around 13.2 million cases (i.e. most of the Dhaka 
District population; Supplementary Table S4) and 35,765 deaths 
(Fig. 3A; Supplementary Figs. S3A & S4A). Although high relative to 
some of the mitigated scenarios, these deaths represent 0.26% of the 
population, and would be expected to lead to a loss of < 1% of total 
working days in 2020 (Fig. 3C). 

We forecast that the first lockdown as implemented in Bangladesh 
would delay the initial epidemic (Fig. 2A and Supplementary Fig. S3A), 
with minor impacts on deaths and hospitalised cases (Fig. 3), while 
increasing working days lost to 10%. Extensions were predicted to 
further delay and slightly widen the first peak (Fig. 2A and Supple
mentary Fig. S3A), though extensions beyond two months had no added 
impact on the epidemic peak and outcomes. Even with lockdown ex
tensions, hospitalisations were still expected to outstrip capacity 
(Fig. 2A), with only modest reductions in deaths (Fig. 3). Working days 
lost were predicted to increase by 1.6–1.9% points with each extra 
month of lockdown. 

We found that introducing household quarantining following lock
down led to the epidemic peak being later, lower and wider than with 
lockdown alone (Fig. 2A and Supplementary Fig. S3A). Hospital ca
pacity was still exceeded, but this intervention was more effective in 
reducing hospitalisations than any of the lockdown-only scenarios. The 
additional working days lost by introducing and maintaining household 
quarantines throughout 2020 were similar to those lost by a one-month 
lockdown extension. 

The impact of introducing compulsory mask-wearing following 
lockdown varied based on the effectiveness of the masks used (Figs. 2B 
and 3). When εm = 0.2, i.e. low filtration efficiency, only relatively small 
reductions to the epidemic peak were predicted, with the decline 
increasing with mask effectiveness in terms of PPE (indicated by 
increasing ρm; Fig. 2B). Masks with high filtration efficiency (εm = 0.8), 
or medium filtration efficiency combined with high PPE efficiency (εm =

0.5, ρm = 1), flattened the peak sufficiently to keep patient numbers 
below hospital capacity (Figs. 2B and 3D). Effective masks also led to 
substantial drops in deaths and hospitalisations, while slightly reducing 
working days lost relative to the lockdown-only scenario (Fig. 3). 

Combining mask-wearing with household quarantine led to greater 
predicted reductions in the epidemic peak, and in both deaths and 
hospitalisations, than either intervention alone (Figs. 2C and 3 A-B). In 
fact, the reductions were typically larger than the sums of the individual 
effects of these interventions, indicating synergy. Percentages of work
ing days lost increase as mask quality decreases, ranging from 9.3% to 
11.6%. A combined strategy of masks and quarantine following lock
down was strategized for implementation in Dhaka District. In the end, 
mask provision was not directly funded despite recommendations, but 
mask-wearing was promoted; by late 2020 mask use had largely 
declined to normal levels. The data-based estimates of cumulative 
deaths in Dhaka District take a path similar to those modelled by 
combining quarantining with masks of high filtration effectiveness 
(εm = 0.8) and medium to high PPE abilities (ρm of 0.5 or 1.0). 
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3.3. Scenario costs 

Total costs of the scenarios explored ranged from $22.2–111.0 
million (Fig. 4B). Despite requiring no direct intervention costs, the 
baseline scenario is among the most expensive due to the healthcare 
costs incurred by hospitalisations. Lockdown as implemented was pre
dicted to be similar in cost to the baseline (unmitigated transmission) 
with slight cost reductions for lockdown extensions. Incorporating 
household quarantine led to lower costs than lockdowns. Combining 
lockdown with low effectiveness masks led to the highest costs due to 
the expense of mask distribution, offset by only small reductions in 
healthcare costs. Masks of high effectiveness, however, led to substantial 
cost reductions, which generally increased when masks and household 
quarantine were modelled together. 

Since most scenarios had a lower total cost than the baseline, the cost 
per death averted is negative except in some of the lower effectiveness 
mask scenarios (Fig. 4C). Lockdowns, and lockdowns combined with 
household quarantine and/or high effectiveness masks all provide 
similar savings per death averted in the $1,616-$2,700 range. 

The %ROI was generally positive, again with some exceptions where 
lower effectiveness masks were used (Fig. 4D). By far the highest %ROIs 
were given by extending lockdown by 2–3 months. This is because, 
despite relatively small reductions in hospitalisation costs (Fig. 3B), the 
only implementation cost to lockdown is advertising (Table 1), and this 
cost is an order of magnitude smaller than the implementation costs of 

quarantine with CSTs, and two orders of magnitude smaller than the 
implementation costs of mask-wearing (due to the high cost of providing 
masks to every household) (Fig. 4A). It should be remembered that while 
the %ROI for extended lockdowns is high, the return itself is relatively 
small and total costs are among the highest as a result (Fig. 4B). Lock
down plus quarantining gave a %ROI of 168%. The %ROI of all scenarios 
involving masks increased with the effectiveness of the masks in 
blocking transmission. Interventions involving high filtration efficiency 
masks all had a %ROI that was similar to or better than the lockdown 
plus quarantine scenario. 

3.4. Intervention timing and scale-up 

Starting either household quarantining or compulsory mask-wearing 
prior to the end of lockdown had little projected impact on health out
comes or the percentage of working days lost (Fig. 5A-D). When masks 
and quarantining are combined, however, total deaths and hospital
isations are seen to decline in response to moving their start dates 
further before the end of lockdown. This difference occurs because the 
combined early start date of the two interventions pushes the epidemic 
peak later (into 2021) than when considering either individually. 
Continuing interventions and calculating outcomes over both 2020 and 
2021, removes this apparent improvement in outcomes with start dates 
prior to lockdown’s end (Supplementary Fig. S6A-D). As the start date of 
quarantining and mask-wearing is delayed beyond the lockdown end 

Fig. 2. Time series of hospital patients for intervention 
scenarios in 2020. Horizontal dashed lines indicate hospital 
bed capacity in Dhaka District. Vertical lines indicate the 
start and end points of lockdown as implemented in 
Bangladesh. (A) Hospital patients in the absence of in
terventions, for the implemented lockdown plus extensions 
of up to 3 months, and for lockdown followed by household 
quarantine with community support teams. (B) Lockdown 
as implemented followed by compulsory mask wearing, 
considering nine mask effectiveness scenarios; εm describes 
the proportion reduction in outward emissions by mask 
wearers, while ρmεm describes the proportion protection to 
mask wearers from others’ emissions. (C) Combined im
pacts of the lockdown, household quarantine, and masks of 
different effectiveness.   
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date, their health benefits decline, with all outcomes approaching those 
of the lockdown-only scenario. Similar consequences to delaying inter
vention start dates result from lengthening the scale-up period (Fig. 5E- 
H). 

3.5. Sensitivity analyses 

R0 was among the top three most influential parameters for all five 
outcome measures reported under all four baseline scenarios (Supple
mentary Figs. S7-10). The duration of symptoms was among the top 
three most influential parameters in determining working days lost 
(since symptomatic people are unable to work) over all baselines, and, 
predictably, the mean lengths of stay in general hospital and ICU beds 
were highly influential for the percentage of patient days that lacked 
beds. For all baselines, other than that with no interventions, the 
introduction date of the disease ranked in the top three most important 
parameters for all outcomes except the percentage of patient days 
lacking beds. Some parameters only gained importance under specific 
baseline scenarios (for example, the level of asymptomatic transmission 
becomes important under symptoms-based household quarantine); for 
more details see Supplement E. 

4. Discussion 

We modelled interventions for controlling COVID-19 transmission in 
Dhaka District, Bangladesh, comparing their: (1) ability to prevent both 
deaths and overwhelming of the health system; and (2) percentage 
working days lost and health provider costs. We found that under ex
pected compliance, lockdowns alone, regardless of duration, were both 
costly and unable to keep cases below hospital capacity, while pre
venting only a small proportion of deaths, confirming that they are not 
an appropriate long-term measure in this context (Amewu et al., 2020; 
Andam et al., 2020; Rahman et al., 2020). Additional quarantining of 
households with symptomatic individuals similarly was not predicted to 
prevent hospitalisations exceeding capacity. Modelling compulsory 
mask-wearing after the lockdown produced outcomes that varied widely 
depending on the effectiveness of masks in blocking transmission. 
Low-filtration efficiency masks had limited impacts and were not 
cost-effective, whereas high-filtration efficiency masks substantially 
reduced deaths, protected the healthcare system and were cost-effective. 
Perhaps our most important finding was that combining mask-wearing 
and household quarantine synergistically led to further reductions in 
deaths and excess hospitalisations, and was cost-effective when masks 
were of high filtration efficiency. For this reason we recommend a 
combination of these measures to provide the best levels of control. 

Fig. 3. Summaries of health outcomes and working days lost for a range of interventions during 2020. NI=no intervention, L=lockdown, Q=household quarantine 
with community support teams, M=compulsory mask wearing. The black bars for the lockdown (L) intervention describe the range of each outcome over the 
scenarios where lockdown is as implemented in Bangladesh and where this lockdown is extended by up to three months. For interventions involving mask-wearing 
(M), the three coloured bars describe scenarios with different values of εm, the proportional reduction in outward emissions by mask wearers. These bars range over 
the scenarios where masks provide no protection to the wearer to where they provide proportional protection to the wearer from others’ emissions that is equal to εm. 
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Simulations also suggest that early introductions of post-lockdown 
measures (i.e. prior to the lockdown’s end) would have had negligible 
additional impact over the full course of the epidemic (though they may 
have improved outcomes in the short-term). However, gaps between 
lockdown ending and post-lockdown interventions (or long periods of 
scale-up) quickly dilute their impacts. 

The inability of symptomatic household quarantining alone to pre
vent hospitalisations exceeding capacity is unsurprising. Even in HICs 
with greater healthcare capacity, lower R0 estimates, and a lower pro
portion of asymptomatic transmission, other modelling studies have 
suggested that symptoms-based household quarantine would still allow 
overwhelming of health systems (Aleta et al., 2020; Ferguson et al., 
2020). Additional tracing and quarantine of non-household contacts of 
symptomatic individuals can improve the effectiveness of quarantine 
measures (Aleta et al., 2020). However, capacity for extensive contact 
tracing is limited in high-density resource-constrained settings like 
Dhaka. The finding that combining symptomatic household quaran
tining with mask mandates (using mid- to high-filtration efficiency 
masks) leads to effective control was crucial at the time, since both these 
NPIs were considered feasible. Given that household quarantining is 

only triggered by a symptomatic case, and we estimate that most cases in 
Bangladesh are asymptomatic, a large proportion of infectious house
holds are likely missed by this measure, which will also have only 
limited impact on pre-symptomatic transmission. Since masks reduce 
transmission for all infections, irrespective of symptoms, masks work 
synergistically with household quarantine. While we consider scenarios 
where masks block only 20% of transmission, we note that this is a worst 
case scenario; experimental work suggests that our mid- to high-quality 
mask scenarios (blocking 50–80% of transmission) are more likely 
(Aydin et al., 2020; Davies et al., 2013). Observational (Abaluck et al., 
2021; Hong et al., 2020; Wang et al., 2020) and other modelling (Stutt 
et al., 2020) studies provide further evidence for the effectiveness of 
masks in blocking transmission. 

In reality, achieving the modelled effectiveness of household quar
antining and mask-wearing depends on high compliance (we assumed 
80% compliance in our main results). A survey in Israel suggested that 
quarantining compliance is likely to be highly dependent on compen
sation for loss of work (Bodas and Peleg, 2020). However, such 
compensation may be unachievable in many LMICs. Reducing insecurity 
experienced by households under quarantine in other ways, for example 

Fig. 4. Costs of intervention scenarios. NI=no intervention, L=lockdown, Q=household quarantine with community support teams, M=compulsory mask wearing. 
The black bars for the lockdown (L) intervention describe the range of each cost outcome over the scenarios where lockdown is as implemented in Bangladesh and 
where this lockdown is extended by up to three months. For interventions involving mask-wearing (M), the three coloured bars describe scenarios with different 
values of εm, the proportional reduction in outward emissions by mask wearers. These bars range over the scenarios where masks provide no protection to the wearer 
to where they provide proportional protection to the wearer from others’ emissions that is equal to εm. (A) Implementation costs of each intervention scenario (i.e. 
total cost minus the hospital care cost). Note that the costs of the mask-wearing scenarios are assumed to be the same regardless of mask effectiveness. (B) Total cost 
of each intervention scenario based on costings in Table 1. (C) Cost of each death averted relative to the baseline (NI) scenario. (D) Percentage return on investment 
in interventions in terms of healthcare savings. 
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by food provisioning and healthcare access, may help mitigate income 
loss and boost compliance amongst poorer households. In Bangladesh, 
CSTs are already playing this role in supporting quarantining house
holds, and in LMICs more broadly, community health workers are likely 
to prove invaluable in using their established trust to encourage 
compliance with NPIs (Ballard et al., 2020). 

While the total costs of many of the interventions explored were 
high, most provided savings per death averted and a positive %ROI 
because of the high contribution of healthcare to overall costs. Note that 
these returns occur despite the relatively young population in 
Bangladesh, which leads to a low percentage of cases being hospitalized 
(2.2%). Furthermore, the costs in working days of the post-lockdown 
NPIs considered were small when compared with the initial lockdown 
costs and potential extensions. These findings are in line with other work 
showing that the costs of unmitigated transmission exceed those of 
implementing NPIs (Thunström et al., 2020; Torres-Rueda et al., 2020). 
The costs we explore here are based on crude assumptions for mask 
purchase and costs of training and rollout of CSTs in Dhaka where there 
is already a large community volunteer workforce that can be mobilized. 
However, we do not include food packages or additional support for 
vulnerable communities that may increase NPI effectiveness but also 
costs. A further limitation to the cost analysis conducted here is that we 
only consider direct costs to the health provider in providing care to 
COVID-19 patients and in implementing interventions; we do not 
consider potential costs to businesses (some of which may not survive 
prolonged lockdowns) and individuals within the population, except via 
the indirect measure of estimated working days lost. Furthermore, 
working days lost are only one of many societal costs of the pandemic 
and associated interventions; impacts on education, mental health, 
healthcare for non-COVID-19 patients, etc., are likely to be significant, 
but are not considered in this study. 

Throughout the development of our model and interactive app, we 
incorporated suggestions from policymakers on questions that most 
urgently needed answers, and on NPIs under consideration and thought 
feasible to implement. This co-development allowed the investigation of 

scenarios appropriate to the local context that addressed pressing policy 
concerns (McBryde et al., 2020). The app (boydorr.gla.ac.uk 
/BGD_Covid-19/CEEDS), which allows a user-friendly exploration and 
visualisation of how scenarios impact health outcomes and costs, proved 
to be an effective tool to support discussions with policymakers, as the 
timing and combination of interventions, along with uncertainties in 
parameters, including compliance, could be explored on the fly. This 
proved to be crucial in understanding the economic and health trade-offs 
involved, as well as helping to demystify the model itself and the ensuing 
epidemic. 

Our model has a number of limitations. First, to ensure it could run 
sufficiently quickly within the interactive app, stochasticity and indi
vidual variation in transmission was not incorporated (in contrast to a 
number of other models developed for COVID-19: Aleta et al., 2020; 
Davies et al., 2020b; Ferguson et al., 2020; Kerr et al., 2021). We expect 
only a minimal impact of these simplifications on disease trajectories 
and key results due to the large population size considered and rapid 
epidemic growth observed. However, they do limit the usefulness of the 
model for exploring elimination scenarios, since stochasticity and 
superspreading, which are inherent to SARS-CoV-2 transmission (Adam 
et al., 2020), become more influential under low levels of infection 
(Vespignani et al., 2020). Imported infections, which may similarly 
become important near elimination, were also not considered. 
Age-structured models have previously been proposed for studying 
COVID-19 (Davies et al., 2020b; Ferguson et al., 2020; Keeling et al., 
2021). We, however, did not include age-structured transmission, 
which, though not entirely realistic, may be reasonable given the high 
degree of intergenerational mixing in Bangladesh (United Nations, 
Department of Economic and Social Affairs, 2019a) and some other 
LMICs (Hodgins and Saad, 2020). Like many other models (Davies et al., 
2020b; Ferguson et al., 2020; Jayasundara et al., 2021; Keeling et al., 
2021), we also do not consider exacerbated mortality when hospital 
capacity is exceeded, likely leading to underestimated mortality under 
those scenarios where this occurs, along with knock-on effects on 
working days lost and cost per death averted. This will not, however, 

Fig. 5. Sensitivity to the start date and scale-up period of quarantine or mask wearing following lockdown. (A-D) Changes in health outcomes, working days lost and 
excess hospital demand over 2020 when the start date of interventions (household quarantine, masks, or quarantine and masks) following lockdown is adjusted 
relative to the lockdown end date. The days taken to scale up interventions to their full effectiveness is held constant at seven days. (E-H) Changes in the same 
outcomes when the time in days taken to scale up post-lockdown interventions is varied. The start date of the post-lockdown interventions is held constant at seven 
days prior to the lockdown end date. 
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impact the general ranking of scenarios by numbers of deaths, or out
comes relating to those scenarios where hospital capacity was not 
exceeded (which are the only intervention scenarios we recommended 
pursuing). Therefore, our main conclusions should be unaffected by this 
assumption. Parameters used for case fatality, and proportions of 
symptomatic and hospitalised infections, were based on age-dependent 
estimates from HICs (Davies et al., 2020b,a) and the age-distribution in 
Dhaka District; an approach similar to that taken by Truelove et al. 
(2020). However, these HIC-derived parameters may be less accurate 
when applied in this setting, as the incidence among age classes of un
derlying conditions that increase COVID-19 risk likely differs in LMICs 
(Clark et al., 2020). We also note that our estimates of working days lost 
make the assumption that employed people cannot switch to working 
from home, possibly leading to overestimation. 

More generally there remains considerable uncertainty around many 
of the model parameters. Our sensitivity analyses indicated that R0 was, 
predictably, very influential in determining health outcomes, but our 
2020 R0 estimate is sensitive to the introduction date and the number of 
imported cases, which are both uncertain. In addition, prior to the 
lockdown in 2020, only 5 deaths due to COVID-19 had been recorded in 
Bangladesh, and given the inherent stochasticity in these events, tuning 
R0 to data in this time window is unlikely to be very accurate. Finally, 
prior to the 2020 lockdown, some control measures, such as cancella
tions of large gatherings, had already been taken (Anwar et al., 2020), 
potentially lowering our R0 estimate. Our estimates of R0 in 2021 
similarly assumed no interventions in the run-up to the 5th April lock
down, but low levels of mask-wearing and quarantine may have led to 
underestimation. The 2020 R0 estimate for Dhaka lies within the 90% 
confidence interval estimated from a meta-analysis of pre-March 2020 
estimates (Davies et al., 2020b). Many of our 2021 estimates exceed this 
confidence interval, but none are in excess of the confidence interval 
reported by Sanche et al. (2020). A possibly higher R0 value for 2021 is 
also not unexpected, given the dominant variant at the time (Beta) was 
known to be more transmissible than variants prevalent in 2020. 

Our model, like many others, assumed that recovered individuals 
remain immune through 2020. Although immunity to SARS-CoV-2 is not 
permanent (Iwasaki, 2021), this assumption appeared reasonable given 
effects of immunity loss were likely limited over this period. However, 
with resurging cases from March 2021 concomitant with relaxed NPIs 
and the emergence of the more transmissible Beta variant, the question 
of immunity became paramount (Saha et al., 2021a). The level of im
munity in the population at the time of the resurgence was very un
certain; seroprevalence in Dhaka was estimated to be 45% (71% in slum 
areas) in mid-2020 (icddrb, 2020), but laboratory evidence suggests that 
prior COVID-19 infections elicit less protection to the Beta variant 
(Planas et al., 2021), making it unclear how this seroprevalence trans
lated into effective immunity against this variant. These uncertainties 
translated into our estimates of R0 in 2021, which varied widely 
(2.13–8.52) under different assumptions, but with a best guess of 
3.46–5.58. The uncertainty in R0 in turn led to uncertainty in pre
dictions, with some suggesting a possible further wave later in 2021, 
while others precluded this. Ultimately a further wave did occur, but it is 
unclear whether this was possible due to sufficient susceptibles 
remaining after the earlier wave or due to immune escape resulting from 
the arrival of the Delta (B.1.617.2) variant, which rapidly became 
dominant during this later wave (Saha et al., 2021b). 

We demonstrated the sensitivity of outcomes to the timing and scale- 
up of interventions, but human behavioural responses most dramatically 
impact outcomes. For these reasons, our model was primarily developed 
as a means to understand the potentially synergistic impact of in
terventions, rather than to accurately forecast dynamics subject to un
predictable changing human behaviours (perhaps leading to some of the 
inconsistencies between the model and data during the 2020 lockdown 
period; Supplementary Fig. S2B). We therefore considered compliance 
to interventions to be a crucial interactive element of our app to build 
understanding and guidance on policy. Within the app, we also 

modelled the degree to which the limited (but greatly increased) testing 
capacity would still under-detect circulating cases, given some degree of 
cognitive dissonance and the considerable uncertainty in pre- and 
asymptomatic transmission during the early months of the pandemic. 
Overall we found the interactive app to be effective for communicating 
epidemiological modelling outcomes to policymakers together with 
their caveats, and we recommend the use of such tools that can be 
tailored to other settings and interventions. 

In summary, we found that two NPIs combined, masks and 
symptoms-based household quarantining, were capable of averting an 
anticipated public health crisis in Dhaka, while also being good value for 
money. These measures were to a large extent rolled out in Bangladesh 
in 2020, and appear to have contributed to limiting transmission, but the 
ensuing epidemic stretched the health system. In practice, compliance 
with these interventions and fidelity of their implementation was highly 
heterogeneous, with measures relaxing over the year as activity returned 
to levels approaching normalcy (although schools have remained closed 
until September 2021). The second and third waves of cases in 2021, 
apparently driven by the Beta and Delta variants respectively, have now 
largely subsided. However, potential for the arrival of further new var
iants and waning in immunity present a risk of further waves. Mask- 
wearing and symptoms-based quarantine may therefore still have an 
important role to play, and the vaccine rollout currently underway needs 
to be pursued at pace. Further work to introduce vaccination to our 
model and examine its interaction with NPIs is now in progress. 

Funding 

The Bill and Melinda Gates Foundation funded work by FAO and 
UoG (INV-022851), and UoG reports funding from Wellcome (207569/ 
Z/17/Z). 

CRediT authorship contribution statement 

Elaine A Ferguson: Conceptualization, Data curation, Formal 
analysis, Investigation, Methodology, Software, Visualization, Writing – 
original draft, Writing – review & editing. Eric Brum: Conceptualiza
tion, Funding acquisition, Investigation, Project administration, Writing 
– review & editing. Anir Chowdhury: Investigation. Shayan Chowd
hury: Investigation. Mikolaj Kundegorski: Data curation. Ayesha S 
Mahmud: Methodology, Writing – review & editing. Nabila Purno: 
Data curation, Investigation, Project administration. Ayesha Sania: 
Funding acquisition, Investigation. Rachel Steenson: Data curation, 
Software, Visualisation. Motahara Tasneem: Data curation, Project 
administration. Katie Hampson: Conceptualisation, Funding acquisi
tion, Data curation, Investigation, Methodology, Software, Supervision, 
Writing – original draft, Writing – review & editing. 

Declaration of Competing Interest 

None. 

Data availability 

All data and code can be accessed via out Github repository 
(https://github.com/boydorr/BGD_Covid-19/tree/main/BGD_NPI_model). 
The interactive app is available at http://boydorr.gla.ac.uk/BGD_ 
Covid-19/CEEDS/. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.epidem.2022.100592. 

E.A. Ferguson et al.                                                                                                                                                                                                                             

https://github.com/boydorr/BGD_Covid-19/tree/main/BGD_NPI_model
https://github.com/boydorr/BGD_Covid-19/tree/main/BGD_NPI_model
https://github.com/boydorr/BGD_Covid-19/tree/main/BGD_NPI_model
http://boydorr.gla.ac.uk/BGD_Covid-19/CEEDS/
http://boydorr.gla.ac.uk/BGD_Covid-19/CEEDS/
https://doi.org/10.1016/j.epidem.2022.100592


Epidemics 40 (2022) 100592

12

References 

Abaluck, J., Kwong, L.H., Styczynski, A., Haque, A., Kabir, A., Bates-jeffries, E., 
Crawford, E., Benjamin-Chung, J., Raihan, S., Rahman, S., Benhachmi, S., Zaman, N., 
Winch, P.J., Hossain, M., Reza, H.M., Jaber, A.A., Momen, S.G., Bani, F.L., Rahman, 
A., Huq, T.S., Luby, S.P., Mobarak, A.M., 2021. The Impact of Community Masking 
on COVID-19: A Cluster-Randomized Trial in Bangladesh. 

Adam, D.C., Wu, P., Wong, J.Y., Lau, E.H.Y., Tsang, T.K., Cauchemez, S., Leung, G.M., 
Cowling, B.J., 2020. Clustering and superspreading potential of SARS-CoV-2 
infections in Hong Kong. Nat. Med. 26, 1714–1719. https://doi.org/10.1038/ 
s41591-020-1092-0. 

Ahmed, S.A.K.S., Ajisola, M., Azeem, K., Bakibinga, P., Chen, Y.-F., Choudhury, N.N., 
Fayehun, O., Griffiths, F., Harris, B., Kibe, P., Lilford, R.J., Omigbodun, A., Rizvi, N., 
Sartori, J., Smith, S., Watson, S.I., Wilson, R., Yeboah, G., Aujla, N., Azam, S.I., 
Diggle, P.J., Gill, P., Iqbal, R., Kabaria, C., Kisia, L., Kyobutungi, C., Madan, J.J., 
Mberu, B., Mohamed, S.F., Nazish, A., Odubanjo, O., Osuh, M.E., Owoaje, E., 
Oyebode, O., Porto de Albuquerque, J., Rahman, O., Tabani, K., Taiwo, O.J., 
Tregonning, G., Uthman, O.A., Yusuf, R., 2020. Impact of the societal response to 
COVID-19 on access to healthcare for non-COVID-19 health issues in slum 
communities of Bangladesh, Kenya, Nigeria and Pakistan: results of pre-COVID and 
COVID-19 lockdown stakeholder engagements. BMJ Glob. Heal. 5, e003042 https:// 
doi.org/10.1136/bmjgh-2020-003042. 

Aleta, A., Martín-Corral, D., Pastore y Piontti, A., Ajelli, M., Litvinova, M., Chinazzi, M., 
Dean, N.E., Halloran, M.E., Longini Jr, I.M., Merler, S., Pentland, A., Vespignani, A., 
Moro, E., Moreno, Y., 2020. Modelling the impact of testing, contact tracing and 
household quarantine on second waves of COVID-19. Nat. Hum. Behav. 4, 964–971. 
https://doi.org/10.1038/s41562-020-0931-9. 

Amewu, S., Asante, S., Pauw, K., Thurlow, J., 2020. The economic costs of COVID-19 in 
Sub-Saharan Africa: insights from a simulation exercise for Ghana. Eur. J. Dev. Res. 
32, 1353–1378. https://doi.org/10.1057/s41287-020-00332-6. 

Andam, K.S., Edeh, H., Oboh, V., Pauw, K., Thurlow, J., 2020. Estimating the economic 
costs of COVID-19 in Nigeria, NSSP Working Paper 63. https://doi.org/10.2499 
/p15738coll2.133846. 

Anwar, S., Nasrullah, M., Hosen, M.J., 2020. COVID-19 and Bangladesh: challenges and 
how to address them. Front. Public Health 8, 154. https://doi.org/10.3389/ 
fpubh.2020.00154. 

Aydin, O., Emon, B., Cheng, S., Hong, L., Chamorro, L.P., Saif, M.T.A., 2020. 
Performance of fabrics for home-made masks against the spread of COVID-19 
through droplets: a quantitative mechanistic study. Extrem. Mech. Lett. 40, 100924 
https://doi.org/10.1016/j.eml.2020.100924. 

Ballard, M., Bancroft, E., Nesbit, J., Johnson, A., Holeman, I., Foth, J., Rogers, D., 
Yang, J., Nardella, J., Olsen, H., Raghavan, M., Panjabi, R., Alban, R., Malaba, S., 
Christiansen, M., Rapp, S., Schechter, J., Aylward, P., Rogers, A., Sebisaho, J., 
Ako, C., Choudhury, N., Westgate, C., Mbeya, J., Schwarz, R., Bonds, M.H., 
Adamjee, R., Bishop, J., Yembrick, A., Flood, D., McLaughlin, M., Palazuelos, D., 
2020. Prioritising the role of community health workers in the COVID-19 response. 
BMJ Glob. Heal. 5, e002550 https://doi.org/10.1136/bmjgh-2020-002550. 

Bangladesh Bureau of Statistics, 2011. Bangladesh Population and Housing Census 2011 
[WWW Document]. URL 〈http://203.112.218.65:8008/Census.aspx?MenuKey=43〉. 

Bangladesh Bureau of Statistics, 2017. Preliminary Report on Household Income and 
Expenditure Survey 2016. https://catalog.ihsn.org/catalog/7399/related-materials. 

Bodas, M., Peleg, K., 2020. Self-isolation compliance in the COVID-19 era influenced by 
compensation: findings from a recent survey In Israel. Health Aff. 39, 936–941. 
https://doi.org/10.1377/hlthaff.2020.00382. 
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