6 research outputs found
Vitamin D status and serum vitamin D binding protein levels in Nigerian children with nephrotic syndrome
Introduction: Nephrotic syndrome is a chronic relapsing condition associated with urinary loss of albumin and other proteins such as vitamin D binding protein (DBP). We determined vitamin D status and serum DBP levels in children with nephrotic syndrome and compared them to healthy controls.
Methods: A cross-sectional study was performed over a six-month period in children less than 18 years of age. The children with nephrotic syndrome were categorised by disease status as either newly diagnosed, in remission, resistant to therapy, or in relapse. Vitamin D levels were regarded as sufficient if ≥75 nmol/L, insufficient if <75 nmol/L but ≥50 nmol/L, deficient if <50 nmol/L, and severely deficient if <25 nmol/L. Serum DBP was also measured.
Results: Fifty-five children with nephrotic syndrome and 24 controls were included in the study. There was no significant difference between the median ages of the cases (72.0 months, interquartile range (IQR) 48.0–120.0 months) and the controls (84.0 months, IQR 39.0–129.0 months). Severe vitamin D deficiency, deficiency and insufficient levels were documented in 54.5%, 41.8% and 3.6% of cases, respectively, significantly lower than the controls (P = 0.003). Vitamin D levels were higher in children with nephrotic syndrome in remission than in those who were not (30.3 ± 15.2 nmol/L vs 19.6 ± 11.0 nmol/L, P = 0.004). In the groups who were in remission, newly diagnosed, relapsing, and resistant, the median vitamin D levels were 30.3 nmol/L, 20.1 nmol/L, 19.2 nmol/L and 9.4 nmol/L, respectively (P = 0.031).
Conclusions: Hypovitaminosis D occurs frequently in Nigerian children with nephrotic syndrome as well as in apparently healthy controls. Routine supplementation of vitamin D should be considered in children with nephrotic syndrome irrespective of whether the disease is in remission or not, or whether it is steroid-sensitive or not
Cellular Location of HNF4α is Linked With Terminal Liver Failure in Humans
Hepatocyte nuclear factor 4 alpha (HNF4α) is a transcription factor that plays a critical role in hepatocyte function, and HNF4α-based reprogramming corrects terminal liver failure in rats with chronic liver disease. In the livers of patients with advanced cirrhosis, HNF4α RNA expression levels decrease as hepatic function deteriorates, and protein expression is found in the cytoplasm. These findings could explain impaired hepatic function in patients with degenerative liver disease. In this study, we analyzed HNF4α localization and the pathways involved in post-translational modification of HNF4α in human hepatocytes from patients with decompensated liver function. RNA-sequencing analysis revealed that AKT-related pathways, specifically phospho-AKT, is down-regulated in cirrhotic hepatocytes from patients with terminal failure, in whom nuclear levels of HNF4α were significantly reduced, and cytoplasmic expression of HNF4α was increased. cMET was also significantly reduced in failing hepatocytes. Moreover, metabolic profiling showed a glycolytic phenotype in failing human hepatocytes. The contribution of cMET and phospho-AKT to nuclear localization of HNF4α was confirmed using Spearman's rank correlation test and pathway analysis, and further correlated with hepatic dysfunction by principal component analysis. HNF4α acetylation, a posttranslational modification important for nuclear retention, was also significantly reduced in failing human hepatocytes when compared with normal controls. Conclusion: These results suggest that the alterations in the cMET-AKT pathway directly correlate with HNF4α localization and level of hepatocyte dysfunction. This study suggests that manipulation of HNF4α and pathways involved in HNF4α posttranslational modification may restore hepatocyte function in patients with terminal liver failure.Fil: Florentino, Rodrigo M.. Univeristy of Pittsburgh. School of Medicine; Estados Unidos. Universidade Federal de Minas Gerais; BrasilFil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Morita, Kazutoyo. University of Pittsburgh at Johnstown; Estados UnidosFil: Takeishi, Kazuki. University of Pittsburgh at Johnstown; Estados UnidosFil: Ostrowska, Alina. University of Pittsburgh at Johnstown; Estados UnidosFil: Achreja, Abhinav. Michigan State University; Estados UnidosFil: Animasahun, Olamide. Michigan State University; Estados UnidosFil: Haep, Nils. University of Pittsburgh at Johnstown; Estados UnidosFil: Arazov, Shohrat. University of Pittsburgh at Johnstown; Estados UnidosFil: Agarwal, Nandini. University of Pittsburgh at Johnstown; Estados UnidosFil: Collin de lHortet, Alexandra. University of Pittsburgh at Johnstown; Estados UnidosFil: Guzman Lepe, Jorge. University of Pittsburgh at Johnstown; Estados UnidosFil: Tafaleng, Edgar N.. University of Pittsburgh at Johnstown; Estados UnidosFil: Mukherjee, Amitava. University of Pittsburgh at Johnstown; Estados UnidosFil: Troy, Kris. University of Pittsburgh at Johnstown; Estados UnidosFil: Banerjee, Swati. University of Pittsburgh at Johnstown; Estados UnidosFil: Paranjpe, Shirish. University of Pittsburgh at Johnstown; Estados UnidosFil: Michalopoulos, George K.. University of Pittsburgh at Johnstown; Estados UnidosFil: Bell, Aaron. University of Pittsburgh at Johnstown; Estados UnidosFil: Nagrath, Deepak. Michigan State University; Estados UnidosFil: Hainer, Sarah J.. University of Pittsburgh at Johnstown; Estados UnidosFil: Fox, Ira J.. University of Pittsburgh at Johnstown; Estados UnidosFil: Soto Gutierrez, Alejandro. University of Pittsburgh at Johnstown; Estados Unido
Exploiting Metabolic Vulnerabilities After Anti-vegf Antibody Therapy in Ovarian Cancer
Despite modest clinical improvement with anti-vascular endothelial growth factor antibody (AVA) therapy in ovarian cancer, adaptive resistance is ubiquitous and additional options are limited. A dependence on glutamine metabolism, via the enzyme glutaminase (GLS), is a known mechanism of adaptive resistance and we aimed to investigate the utility of a GLS inhibitor (GLSi). Our in vitro findings demonstrated increased glutamine abundance and a significant cytotoxic effect in AVA-resistant tumors when GLSi was administered in combination with bevacizumab. In vivo, GLSi led to a reduction in tumor growth as monotherapy and when combined with AVA. Furthermore, GLSi initiated after the emergence of resistance to AVA therapy resulted in a decreased metabolic conversion of pyruvate to lactate as assessed by hyperpolarized magnetic resonance spectroscopy and demonstrated robust antitumor effects with a survival advantage. Given the increasing population of patients receiving AVA therapy, these findings justify further development of GLSi in AVA resistance
Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas
Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle–related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT–expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas
Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas
Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle–related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT–expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas