289 research outputs found

    Rational Use of Monoclonal Antibodies as Therapeutic Treatment in an Oncologic Patient with Long COVID

    Get PDF
    We present the case of a 76-year-old male patient persistently infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the setting of a stage IIIC cutaneous melanoma and non-Hodgkin’s lymphoma (NHL). Due to the persistent coronavirus disease 19 (COVID-19), all cancer treatments were discontinued. Because of the worsening of his clinical state and the persistence of SARS-CoV-2 positivity for more than six months, the patient was treated with sotrovimab, which was ineffective due to resistance mutations acquired during that time. In order to resume cancer treatment and make the patient free from SARS-CoV-2, an in vitro screening of Evusheld monoclonal antibodies (tixagevumab–cilgavimab) against the viral strains isolated from the subject was performed. The promising results obtained during in vitro testing led to the authorization of the off-label use of Evusheld, which made the patient negative for SARS-CoV-2, thus, allowing him to resume his cancer treatment. This study highlights the Evusheld monoclonal antibodies’ efficacy, not only in prevention but also in successful therapy against prolonged COVID-19. Therefore, testing neutralizing monoclonal antibodies in vitro against SARS-CoV-2 mutants directly isolated from patients could provide useful information for the treatment of people affected by long COVID

    Value of team approach combined with clinical pathway for diabetic foot problems: a clinical evaluation

    Get PDF
    Aims: To evaluate the effectiveness of management of diabetic foot problems (DFP) by the National University Hospital (NUH) Multidisciplinary Diabetic Foot Team combined with a clinical pathway in terms of average length of stay (ALOS), readmission rates, hospitalisation cost per patient, major reamputation rate, and complication rate. Methods: 939 patients admitted to the Department of Orthopaedic Surgery, NUH, for DFP from 2002 (before team formation) to 2007 (after team formation). It consisted of six cohorts of patients – 61 for 2002, 70 for 2003, 148 for 2004, 180 for 2005, 262 for 2006, and 218 for 2007. All patients were managed by the NUH Multidisciplinary Diabetic Foot Team combined with a clinical pathway. Statistical analyses were carried out for five parameters (ALOS, hospitalisation cost per patient, major amputation rate, readmission rate, and complication rate). Results: From 2002 to 2007, the ALOS was significantly reduced from 20.36 days to 12.20 days (p=0.0005). Major amputation rate was significantly reduced from 31.15 to 11.01% (p<0.0005). There was also a significant reduction in complication rate from 19.67 to 7.34% (p=0.005). There were reductions in the hospitalisation cost per patient and readmission rate after formation of the multidisciplinary team but they were not statistically significant. Conclusion: Our evaluation showed that a multidisciplinary team approach combined with the implementation of a clinical pathway in NUH was effective in reducing the ALOS, major amputation rate, and complication rate of DFP

    Microenvironment and tumor inflammatory features improve prognostic prediction in gastro-entero-pancreatic neuroendocrine neoplasms

    Get PDF
    Microenvironment-related immune and inflammatory markers, when combined with established Ki-67 and morphology parameters, can improve prognostic prediction in gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs). Therefore, we evaluated the prognostic value of microenvironment and tumor inflammatory features (MoTIFs) in GEP-NENs. For this purpose, formalin-fixed paraffin-embedded tissue sections from 350 patients were profiled by immunohistochemistry for immune, inflammatory, angiogenesis, proliferation, NEN-, and fibroblast-related markers. A total of 314 patients were used to generate overall survival (OS) and disease-free survival (DFS) MoTIFs prognostic indices (PIs). PIs and additional variables were assessed using Cox models to generate nomograms for predicting 5-year OS and DFS. A total of 36 patients were used for external validation of PIs and nomograms' prognostic segregations. From our analysis, G1/G2 versus G3 GEP-NENs showed phenotypic divergence with immune-inflammatory markers. HLA, CD3, CD8, and PD-1/PD-L1 IHC expression separated G3 into two sub-categories with high versus low adaptive immunity-related features. MoTIFs PI for OS based on COX-2Tumor(T) > 4, PD-1Stromal(S) > 0, CD8S < 1, and HLA-IS < 1 was associated with worst survival (hazard ratio [HR] 2.50; 95% confidence interval [CI], 2.12–2.96; p < 0.0001). MoTIFs PI for DFS was based on COX-2T > 4, PD-1S > 4, HLA-IS < 1, HLA-IT < 2, HLA-DRS < 6 (HR 1.77; 95% CI, 1.58–1.99; p < 0.0001). Two nomograms were developed including morphology (HR 4.83; 95% CI, 2.30–10.15; p < 0.001) and Ki-67 (HR 11.32; 95% CI, 5.28–24.24; p < 0.001) for OS, and morphology (PI = 0: HR 10.23; 95% CI, 5.67–18.47; PI = 5: HR 2.87; 95% CI, 1.21–6.81; p < 0.001) and MoTIFs PI for DFS in well-differentiated GEP-NENs (HR 6.21; 95% CI, 2.52–13.31; p < 0.001). We conclude that G1/G2 to G3 transition is associated with immune-inflammatory profile changes; in fact, MoTIFs combined with morphology and Ki-67 improve 5-year DFS prediction in GEP-NENs. The immune context of a subset of G3 poorly differentiated tumors is consistent with activation of adaptive immunity, suggesting a potential for responsiveness to immunotherapy targeting immune checkpoints

    Chemical sensing with 2D materials

    Get PDF
    During the last decade, two-dimensional materials (2DMs) have attracted great attention due to their unique chemical and physical properties, which make them appealing platforms for diverse applications in opto-electronic devices, energy generation and storage, and sensing. Among their various extraordinary properties, 2DMs possess high surface area-to-volume ratios and ultra-high surface sensitivity to the environment, which are key characteristics for applications in chemical sensing. Furthermore, 2DMs’ superior electrical and optical properties, combined with their excellent mechanical characteristics such as robustness and flexibility, make these materials ideal components for the fabrication of a new generation of high-performance chemical sensors. Depending on the specific device, 2DMs can be tailored to interact with various chemical species at the non-covalent level, making them powerful platforms for fabricating devices exhibiting a high sensitivity towards detection of various analytes including gases, ions and small biomolecules. Here, we will review the most enlightening recent advances in the field of chemical sensors based on atomically-thin 2DMs and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and sensing devices

    Treatment of peripheral arterial disease in diabetes: a consensus of the Italian Societies of Diabetes (SID, AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE).

    Get PDF
    AbstractDiabetic foot (DF) is a chronic and highly disabling complication of diabetes. The prevalence of peripheral arterial disease (PAD) is high in diabetic patients and, associated or not with peripheral neuropathy (PN), can be found in 50% of cases of DF. It is worth pointing out that the number of major amputations in diabetic patients is still very high. Many PAD diabetic patients are not revascularised due to lack of technical expertise or, even worse, negative beliefs because of poor experience. This despite the progress obtained in the techniques of distal revascularisation that nowadays allow to reopen distal arteries of the leg and foot. Italy has one of the lowest prevalence rates of major amputations in Europe, and has a long tradition in the field of limb salvage by means of an aggressive approach in debridement, antibiotic therapy and distal revascularisation. Therefore, we believe it is appropriate to produce a consensus document concerning the treatment of PAD and limb salvage in diabetic patients, based on the Italian experience in this field, to share with the scientific community

    A microRNA prognostic signature in patients with diffuse intrinsic pontine gliomas through non-invasive liquid biopsy

    Get PDF
    Diffuse midline gliomas (DMGs) originate in the thalamus, brainstem, cerebellum and spine. This entity includes tumors that infiltrate the pons, called diffuse intrinsic pontine gliomas (DIPGs), with a rapid onset and devastating neurological symptoms. Since surgical removal in DIPGs is not feasible, the purpose of this study was to profile circulating miRNA expression in DIPG patients in an effort to identify a non-invasive prognostic signature with clinical impact. Using a high-throughput platform, miRNA expression was profiled in serum samples collected at the time of MRI diagnosis and prior to radiation and/or systemic therapy from 47 patients enrolled in clinical studies, combining nimotuzumab and vinorelbine with concomitant radiation. With progression-free survival as the primary endpoint, a semi-supervised learning approach was used to identify a signature that was also tested taking overall survival as the clinical endpoint. A signature comprising 13 circulating miRNAs was identified in the training set (n = 23) as being able to stratify patients by risk of disease progression (log-rank p = 0.00014; HR = 7.99, 95% CI 2.38–26.87). When challenged in a separate validation set (n = 24), it confirmed its ability to predict progression (log-rank p = 0.00026; HR = 5.51, 95% CI 2.03–14.9). The value of our signature was also confirmed when overall survival was considered (log-rank p = 0.0021, HR = 4.12, 95% CI 1.57–10.8). We have identified and validated a prognostic marker based on the expression of 13 circulating miRNAs that can shed light on a patient’s risk of progression. This is the first demonstration of the usefulness of nucleic acids circulating in the blood as powerful, easy-to-assay molecular markers of disease status in DIPG. This study provides Class II evidence that a signature based on 13 circulating miRNAs is associated with the risk of disease progression

    Heme catabolism by tumor-associated macrophages controls metastasis formation

    Get PDF
    Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1–CSF1R–C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker

    Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy

    Get PDF
    Background Improvement of efficacy of immune checkpoint blockade (ICB) remains a major clinical goal. Association of ICB with immunomodulatory epigenetic drugs is an option. However, epigenetic inhibitors show a heterogeneous landscape of activities. Analysis of transcriptional programs induced in neoplastic cells by distinct classes of epigenetic drugs may foster identification of the most promising agents. Methods Melanoma cell lines, characterized for mutational and differentiation profile, were treated with inhibitors of DNA methyltransferases (guadecitabine), histone deacetylases (givinostat), BET proteins (JQ1 and OTX-015), and enhancer of zeste homolog 2 (GSK126). Modulatory effects of epigenetic drugs were evaluated at the gene and protein levels. Master molecules explaining changes in gene expression were identified by Upstream Regulator (UR) analysis. Gene set enrichment and IPA were used respectively to test modulation of guadecitabine-specific gene and UR signatures in baseline and on-treatment tumor biopsies from melanoma patients in the Phase Ib NIBIT-M4 Guadecitabine + Ipilimumab Trial. Prognostic significance of drug-specific immune-related genes was tested with Timer 2.0 in TCGA tumor datasets. Results Epigenetic drugs induced different profiles of gene expression in melanoma cell lines. Immune-related genes were frequently upregulated by guadecitabine, irrespective of the mutational and differentiation profiles of the melanoma cell lines, to a lesser extent by givinostat, but mostly downregulated by JQ1 and OTX-015. GSK126 was the least active drug. Quantitative western blot analysis confirmed drug-specific modulatory profiles. Most of the guadecitabine-specific signature genes were upregulated in on-treatment NIBIT-M4 tumor biopsies, but not in on-treatment lesions of patients treated only with ipilimumab. A guadecitabine-specific UR signature, containing activated molecules of the TLR, NF-kB, and IFN innate immunity pathways, was induced in drug-treated melanoma, mesothelioma and hepatocarcinoma cell lines and in a human melanoma xenograft model. Activation of guadecitabine-specific UR signature molecules in on-treatment tumor biopsies discriminated responding from non-responding NIBIT-M4 patients. Sixty-five % of the immune-related genes upregulated by guadecitabine were prognostically significant and conferred a reduced risk in the TCGA cutaneous melanoma dataset. Conclusions The DNMT inhibitor guadecitabine emerged as the most promising immunomodulatory agent among those tested, supporting the rationale for usage of this class of epigenetic drugs in combinatorial immunotherapy approaches. © 2022, The Author(s)
    • …
    corecore