7 research outputs found

    Wooden Reinforcement for Earth Constructions in the Castile Area of Spain

    Get PDF
    This chapter studies wooden reinforcements for earth constructions. Analysing vernacular houses from Castile, Spain, I discovered this reinforcement and started to compare its performance with other traditional bracings for earth construction. At present, approximately over 30% of the world’s population still live in earth houses, 50% of which are in the third world countries. This is why it is so important to understand how earthwork constructions behave. Most importantly, for the rehabilitation and preservation of existing World Heritage Sites, also there is a great need to construct new buildings in developed countries under the criteria of sustainability and developing countries because of housing shortages and lack of materials. The main failure of earth constructions is because of the low tensile resistance of the earth, causing walls to detach in the corners under horizontal loads. This chapter analyses a vernacular wooden reinforcement from Castile, Spain: its history, composition, construction and structural behaviour. It compares it with earth constructions without reinforcements, using a unique model under the same conditions. This makes a qualitative and quantitative comparison possible. The conclusions can be applied to rehabilitation or construction of new-build depending on the loads, distances and height, which can be a security condition or a vital necessity

    The miniJPAS survey: A preview of the Universe in 56 colors

    No full text
    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg2 field-of-view and plate scale of 0.23 arcsec pixel−1. To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∌1 deg2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (FWHM ∌ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of magAB ≃ 22−23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3″ aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≀0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∌ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude
    corecore