3,293 research outputs found
On the numerical analysis of triplet pair production cross-sections and the mean energy of produced particles for modelling electron-photon cascade in a soft photon field
The double and single differential cross-sections with respect to positron
and electron energies as well as the total cross-section of triplet production
in the laboratory frame are calculated numerically in order to develop a Monte
Carlo code for modelling electron-photon cascades in a soft photon field. To
avoid numerical integration irregularities of the integrands, which are
inherent to problems of this type, we have used suitable substitutions in
combination with a modern powerful program code Mathematica allowing one to
achieve reliable higher-precission results. The results obtained for the total
cross-section closely agree with others estimated analytically or by a
different numerical approach. The results for the double and single
differential cross-sections turn out to be somewhat different from some
reported recently. The mean energy of the produced particles, as a function of
the characteristic collisional parameter (the electron rest frame photon
energy), is calculated and approximated by an analytical expression that
revises other known approximations over a wide range of values of the argument.
The primary-electron energy loss rate due to triplet pair production is shown
to prevail over the inverse Compton scattering loss rate at several (2)
orders of magnitude higher interaction energy than that predicted formerly.Comment: 18 pages, 8 figures, 2 tables, LaTex2e, Iopart.cls, Iopart12.clo,
Iopams.st
Experimental analysis of sample-based maps for long-term SLAM
This paper presents a system for long-term SLAM (simultaneous localization and mapping) by mobile service robots and its experimental evaluation in a real dynamic environment. To deal with the stability-plasticity dilemma (the trade-off between adaptation to new patterns and preservation of old patterns), the environment is represented at multiple timescales simultaneously (5 in our experiments). A sample-based representation is
proposed, where older memories fade at different rates depending on the timescale, and robust statistics are used to interpret the samples. The dynamics of this representation are analysed in a five week experiment, measuring the relative influence of short- and long-term memories over time, and further demonstrating the robustness of the approach
Inner Space Preserving Generative Pose Machine
Image-based generative methods, such as generative adversarial networks
(GANs) have already been able to generate realistic images with much context
control, specially when they are conditioned. However, most successful
frameworks share a common procedure which performs an image-to-image
translation with pose of figures in the image untouched. When the objective is
reposing a figure in an image while preserving the rest of the image, the
state-of-the-art mainly assumes a single rigid body with simple background and
limited pose shift, which can hardly be extended to the images under normal
settings. In this paper, we introduce an image "inner space" preserving model
that assigns an interpretable low-dimensional pose descriptor (LDPD) to an
articulated figure in the image. Figure reposing is then generated by passing
the LDPD and the original image through multi-stage augmented hourglass
networks in a conditional GAN structure, called inner space preserving
generative pose machine (ISP-GPM). We evaluated ISP-GPM on reposing human
figures, which are highly articulated with versatile variations. Test of a
state-of-the-art pose estimator on our reposed dataset gave an accuracy over
80% on PCK0.5 metric. The results also elucidated that our ISP-GPM is able to
preserve the background with high accuracy while reasonably recovering the area
blocked by the figure to be reposed.Comment: http://www.northeastern.edu/ostadabbas/2018/07/23/inner-space-preserving-generative-pose-machine
Multiwavelength observations of Mkn 501 during the 1997 high state
During the observation period 1997, the nearby Blazar Mkn 501 showed
extremely strong emission and high variability. We examine multiwavelength
aspects of this event using radio, optical, soft and hard X-ray and TeV data.
We concentrate on the medium-timescale variability of the broadband spectra,
averaged over weekly intervals.
We confirm the previously found correlation between soft and hard X-ray
emission and the emission at TeV energies, while the source shows only minor
variability at radio and optical wavelengths. The non-linear correlation
between hard X-ray and TeV fluxes is consistent with a simple analytic estimate
based on an SSC model in which Klein-Nishina effects are important for the
highest-energy electrons in the jet, and flux variations are caused by
variations of the electron density and/or the spectral index of the electron
injection spectrum.
The time-averaged spectra are fitted with a Synchrotron Self-Compton (SSC)
dominated leptonic jet model, using the full Klein-Nishina cross section and
following the self-consistent evolution of relativistic particles along the
jet, accounting for gamma-gamma absorption and pair production within the
source as well as due to the intergalactic infrared background radiation. The
contribution from external inverse-Compton scattering is tightly constrained by
the low maximum EGRET flux and found to be negligible at TeV energies. We find
that high levels of the X-ray and TeV fluxes can be explained by a hardening of
the energy spectra of electrons injected at the base of the jet, in remarkable
contrast to the trend found for gamma-ray flares of the flat-spectrum radio
quasar PKS 0528+134.Comment: accepted for publication in ApJ, 31 pages, 11 figure
Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image
We describe the first method to automatically estimate the 3D pose of the
human body as well as its 3D shape from a single unconstrained image. We
estimate a full 3D mesh and show that 2D joints alone carry a surprising amount
of information about body shape. The problem is challenging because of the
complexity of the human body, articulation, occlusion, clothing, lighting, and
the inherent ambiguity in inferring 3D from 2D. To solve this, we first use a
recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D
body joint locations. We then fit (top-down) a recently published statistical
body shape model, called SMPL, to the 2D joints. We do so by minimizing an
objective function that penalizes the error between the projected 3D model
joints and detected 2D joints. Because SMPL captures correlations in human
shape across the population, we are able to robustly fit it to very little
data. We further leverage the 3D model to prevent solutions that cause
interpenetration. We evaluate our method, SMPLify, on the Leeds Sports,
HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect
to the state of the art.Comment: To appear in ECCV 201
Overview of the use of the PCI bus in present and future high energy physics data acquisition systems
Recommended from our members
Measurement of prompt D0, D+, D*+, and DS+ production in p–Pb collisions at √sNN = 5.02 TeV
The measurement of the production of prompt D0, D+, D*+, and DS+ mesons in proton–lead (p–Pb) collisions at the centre-of-mass energy per nucleon pair of sNN = 5.02 TeV, with an integrated luminosity of 292 ± 11 μb−1, are reported. Differential production cross sections are measured at mid-rapidity (−0.96 < ycms< 0.04) as a function of transverse momentum (pT) in the intervals 0 < pT< 36 GeV/c for D0, 1 < pT< 36 GeV/c for D+ and D*+, and 2 < pT< 24 GeV/c for D+ mesons. For each species, the nuclear modification factor RpPb is calculated as a function of pT using a proton-proton (pp) ref- erence measured at the same collision energy. The results are compatible with unity in the whole pT range. The average of the non-strange D mesons RpPb is compared with theoretical model predictions that include initial-state effects and parton transport model predictions. The pT dependence of the D0, D+, and D*+ nuclear modification factors is also reported in the interval 1 < pT< 36 GeV/c as a function of the collision centrality, and the central-to-peripheral ratios are computed from the D-meson yields measured in different centrality classes. The results are further compared with charged-particle measurements and a similar trend is observed in all the centrality classes. The ratios of the pT-differential cross sections of D0, D+, D*+, and DS+ mesons are also reported. The DS+ and D+ yields are compared as a function of the charged-particle multiplicity for several pT intervals. No modification in the relative abundances of the four species is observed with respect to pp collisions within the statistical and systematic uncertainties. [Figure not available: see fulltext.]
Recommended from our members
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at √sNN = 5.02 TeV
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval −1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.
- …
