4 research outputs found
The three-dimensional random field Ising magnet: interfaces, scaling, and the nature of states
The nature of the zero temperature ordering transition in the 3D Gaussian
random field Ising magnet is studied numerically, aided by scaling analyses. In
the ferromagnetic phase the scaling of the roughness of the domain walls,
, is consistent with the theoretical prediction .
As the randomness is increased through the transition, the probability
distribution of the interfacial tension of domain walls scales as for a single
second order transition. At the critical point, the fractal dimensions of
domain walls and the fractal dimension of the outer surface of spin clusters
are investigated: there are at least two distinct physically important fractal
dimensions. These dimensions are argued to be related to combinations of the
energy scaling exponent, , which determines the violation of
hyperscaling, the correlation length exponent , and the magnetization
exponent . The value is derived from the
magnetization: this estimate is supported by the study of the spin cluster size
distribution at criticality. The variation of configurations in the interior of
a sample with boundary conditions is consistent with the hypothesis that there
is a single transition separating the disordered phase with one ground state
from the ordered phase with two ground states. The array of results are shown
to be consistent with a scaling picture and a geometric description of the
influence of boundary conditions on the spins. The details of the algorithm
used and its implementation are also described.Comment: 32 pp., 2 columns, 32 figure
Revisiting the scaling of the specific heat of the three-dimensional random-field Ising model
We revisit the scaling behavior of the specific heat of the three-dimensional
random-field Ising model with a Gaussian distribution of the disorder. Exact ground states
of the model are obtained using graph-theoretical algorithms for different strengths
= 268 3 spins. By numerically differentiating the bond energy
with respect to h, a specific-heat-like quantity is obtained whose
maximum is found to converge to a constant in the thermodynamic limit. Compared to a
previous study following the same approach, we have studied here much larger system sizes
with an increased statistical accuracy. We discuss the relevance of our results under the
prism of a modified Rushbrooke inequality for the case of a saturating specific heat.
Finally, as a byproduct of our analysis, we provide high-accuracy estimates of the
critical field hc =
2.279(7) and the critical exponent of the correlation exponent
ν =
1.37(1), in excellent agreement to the most recent computations in the
literature
Universality aspects of the trimodal random-field Ising model
We investigate the critical properties of the d = 3 random-field Ising
model with an equal-weight trimodal distribution at zero temperature. By implementing
suitable graph-theoretical algorithms, we compute large ensembles of ground states for
several values of the disorder strength h and system sizes up to
N = 1283. Using a new approach based on the sample-to-sample
fluctuations of the order parameter of the system and proper finite-size scaling
techniques we estimate the critical disorder strength
hc = 2.747(3) and the critical exponents of the correlation
length ν = 1.34(6) and order parameter β = 0.016(4).
These estimates place the model into the universality class of the corresponding Gaussian
random-field Ising model