54 research outputs found

    Fuzzy sets in nonparametric Bayes regression

    Full text link
    A simple Bayesian approach to nonparametric regression is described using fuzzy sets and membership functions. Membership functions are interpreted as likelihood functions for the unknown regression function, so that with the help of a reference prior they can be transformed to prior density functions. The unknown regression function is decomposed into wavelets and a hierarchical Bayesian approach is employed for making inferences on the resulting wavelet coefficients.Comment: Published in at http://dx.doi.org/10.1214/074921708000000084 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Poisson Models with Employer-Employee Unobserved Heterogeneity: An Application to Absence Data

    Get PDF
    We propose a parametric model based on the Poisson distribution that permits to take into account both unobserved worker and workplace heterogeneity as long as both effects are nested. By assuming that workplace and worker unobserved heterogeneity components follow a gamma and a Dirichlet distribution respectively, we obtain a closed form the unconditional density function. We estimate the model to obtain the determinants of absenteeism using linked employer-employee Canadian data from the Workplace and Employee Survey (2003). Coefficient estimates are interpreted in the framework of the typical labor-leisure model. We show that omitting unobserved heterogeneity on either side of the employment relationship leads to notable biases in the estimated coefficients. In particular, the impact of wages on absences is underestimated in simpler models.Absenteeism, Linked Employer-Employee Data, Employer-Employee Unobserved Heterogeneity, Count Data Models, Dirichlet Distribution

    Poisson Models with Employer-Employee Unobserved Heterogeneity: An Application to Absence Data

    Get PDF
    We propose a parametric model based on the Poisson distribution that permits to take into account both unobserved worker and workplace heterogeneity as long as both effects are nested. By assuming that workplace and worker unobserved heterogeneity components follow a gamma and a Dirichlet distribution respectively, we obtain a closed form for the unconditional density function. We estimate the model to obtain the determinants of absenteeism using linked employer-employee Canadian data from the Workplace and Employee Survey (2003). Coefficient estimates are interpreted in the framework of the typical labor-leisure model. We show that omitting unobserved heterogeneity on either side of the employement relationship leads to notable biases in the estimated coefficients. In particular, the impact of wages on absences is underestimated in simpler models.Absenteeism; Linked Employer-Employee Data; Employer- Employee Unobserved Heterogeneity; Count Data Models; Dirichlet Distribution

    Modèle Bayésien de tarification de l’assurance des flottes de véhicules

    Get PDF
    Nous proposons un modèle paramétrique de tarification de l’assurance de véhicules routiers appartenant à une flotte. Les tables de primes qui y sont présentées tiennent compte des accidents passés des véhicules, des caractéristiques observables des véhicules et des flottes et des infractions au Code de la sécurité routière des conducteurs et des transporteurs. De plus, les primes sont ajustées en fonction des accidents accumulés par les flottes dans le temps. Il s’agit d’un modèle qui prend directement en compte des changements explicites des différentes composantes des probabilités d’accidents. Il représente une extension aux modèles d’assurance automobile de type bonus-malus pour les primes individuelles (Lemaire, 1985 ; Dionne et Vanasse, 1989 et 1992 ; Pinquet, 1997 et 1998 ; Frangos et Vrontos, 2001 ; Purcaru et Denuit, 2003). L’extension ajoute un effet flotte à l’effet véhicule pour tenir compte des caractéristiques ou des actions non observables des transporteurs sur les taux d’accidents des camions. Cette forme de tarification comporte plusieurs avantages. Elle permet de visualiser l’impact des comportements des propriétaires des flottes et des conducteurs des véhicules sur les taux d’accidents prédits et, par conséquent, sur les primes. Elle mesure l’influence des infractions et des accidents accumulés sur les primes d’assurance mais d’une façon différente. En effet, les effets des infractions sont obtenus via la composante de régression, alors que les effets des accidents proviennent des résidus non expliqués de la régression sur les accidents des camions via un modèle bayésien de tarification.We are proposing a parametric model to rate insurance for vehicles belonging to a fleet. The tables of premiums presented take into account past vehicle accidents, observable characteristics of the vehicles and fleets, and violations of the road-safety code committed by drivers and carriers. The premiums are also adjusted according to accidents accumulated by the fleets over time. The model proposed accounts directly for explicit changes in the various components of the probability of accidents. It represents an extension of bonus-malus-type automobile insurance models for individual premiums (Lemaire, 1985; Dionne and Vanasse, 1989 and 1992; Pinquet, 1997 and 1998; Frangos and Vrontos, 2001; Purcaru and Denuit, 2003). The extension adds a fleet effect to the vehicle effect so as to account for the impact that the unobservable characteristics or actions of carriers can have on truck accident rates. This form of rating makes it possible to visualize what impact the behaviors of owners and drivers can have on the predicted rate of accidents and, consequently, on premiums

    Étude des comportements de sécurité routière des propriétaires, exploitants et conducteurs des véhicules lourds au Québec

    Get PDF
    Le contenu de notre rapport consiste à : 1) Identifier les effets de l’application de la « Politique d’évaluation des PEVLs » sur la sécurité routière. 2) Inventorier les infractions commises par les conducteurs de véhicules lourds et par les PEVLs les plus courantes et leurs récurrences. Établir un lien statistique entre les types d’infraction des conducteurs de VLs et des PEVLs et les types d’accident. 3) Identifier et catégoriser les profils des conducteurs des VLs et des PEVLs et déterminer ceux qui sont les plus à risque sur le plan de la sécurité routière

    Modèle Bayésien de tarification de l’assurance des flottes de véhicules*

    Get PDF
    We are proposing a parametric model to rate insurance for vehicles belonging to a fleet. The tables of premiums presented take into account past vehicle accidents, observable characteristics of the vehicles and fleets, and violations of the road-safety code committed by drivers and carriers. The premiums are also adjusted according to accidents accumulated by the fleets over time. The model proposed accounts directly for explicit changes in the various components of the probability of accidents. It represents an extension of bonus-malus-type automobile insurance models for individual premiums (Lemaire, 1985; Dionne and Vanasse, 1989 and 1992; Pinquet, 1997 and 1998; Frangos and Vrontos, 2001; Purcaru and Denuit, 2003). The extension adds a fleet effect to the vehicle effect so as to account for the impact that the unobservable characteristics or actions of carriers can have on truck accident rates. This form of rating makes it possible to visualize what impact the behaviors of owners and drivers can have on the predicted rate of accidents and, consequently, on premiums. Nous proposons un modèle paramétrique de tarification de l’assurance de véhicules routiers appartenant à une flotte. Les tables de primes qui y sont présentées tiennent compte des accidents passés des véhicules, des caractéristiques observables des véhicules et des flottes et des infractions au Code de la sécurité routière des conducteurs et des transporteurs. De plus, les primes sont ajustées en fonction des accidents accumulés par les flottes dans le temps. Il s’agit d’un modèle qui prend directement en compte des changements explicites des différentes composantes des probabilités d’accidents. Il représente une extension aux modèles d’assurance automobile de type bonus-malus pour les primes individuelles (Lemaire, 1985 ; Dionne et Vanasse, 1989 et 1992 ; Pinquet, 1997 et 1998 ; Frangos et Vrontos, 2001 ; Purcaru et Denuit, 2003). L’extension ajoute un effet flotte à l’effet véhicule pour tenir compte des caractéristiques ou des actions non observables des transporteurs sur les taux d’accidents des camions. Cette forme de tarification comporte plusieurs avantages. Elle permet de visualiser l’impact des comportements des propriétaires des flottes et des conducteurs des véhicules sur les taux d’accidents prédits et, par conséquent, sur les primes. Elle mesure l’influence des infractions et des accidents accumulés sur les primes d’assurance mais d’une façon différente. En effet, les effets des infractions sont obtenus via la composante de régression, alors que les effets des accidents proviennent des résidus non expliqués de la régression sur les accidents des camions via un modèle bayésien de tarification.

    Poisson Models with Employer-Employee Unobserved Heterogeneity: an Application to Absence Data

    Get PDF
    We propose a parametric model based on the Poisson distribution that permits to take into account both unobserved worker and workplace heterogeneity as long as both effects are nested. By assuming that workplace and worker unobserved heterogeneity components follow a gamma and a Dirichlet distribution respectively, we obtain a closed form for the unconditional density function. We estimate the model to obtain the determinants of absenteeism using linked employer-employee Canadian data from the Workplace and Employee Survey (2003). Coefficient estimates are interpreted in the framework of the typical labor-leisure model. We show that omitting unobserved heterogeneity on either side of the employment relationship leads to notable biases in the estimated coefficients. In particular, the impact of wages on absences is underestimated in simpler models

    The CC-Bio Project: Studying the Effects of Climate Change on Quebec Biodiversity

    Get PDF
    Anticipating the effects of climate change on biodiversity is now critical for managing wild species and ecosystems. Climate change is a global driver and thus affects biodiversity globally. However, land-use planners and natural resource managers need regional or even local predictions. This provides scientists with formidable challenges given the poor documentation of biodiversity and its complex relationships with climate. We are approaching this problem in Quebec, Canada, through the CC-Bio Project (http://cc‑bio.uqar.ca/), using a boundary organization as a catalyst for team work involving climate modelers, biologists, naturalists, and biodiversity managers. In this paper we present the CC-Bio Project and its general approach, some preliminary results, the emerging hypothesis of the northern biodiversity paradox (a potential increase of biodiversity in northern ecosystems due to climate change), and an early assessment of the conservation implications generated by our team work
    corecore