11 research outputs found

    The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    Get PDF
    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock copolymer or a comb copolymer. Due to the presence of the large-scale structure, the chains are stretched. The aim of this paper is to investigate the influence of this chain stretching on the formation of the small-scale structure. To gain insight we study infinite melts of infinitely long copolymer chains that are subjected to a stretching force. For melts of monodisperse multiblock copolymers we find that the stretching destabilizes the homogeneous phase. If the stretching is strong, the lamellar structure is the only stable structure. The periodicity increases with the degree of stretching. For melts of monodisperse comb copolymers the chain stretching has no influence on the stability of the homogeneous phase. If the stretching is strong, the lamellar structure and the hexagonal structure are the only stable structures. The periodicity is independent of the degree of stretching. For the multiblock copolymer we investigated the influence of block length polydispersity. For small polydispersity the period of the structure increases monotonically with the degree of stretching. For intermediate polydispersity, the period initially decreases before it starts to increase. For large polydispersity, the mean-field period at the spinodal is infinite, becoming finite once the stretching force exceeds some critical value. For very large polydispersity the mean-field period at the spinodal remains infinite for any value of the stretching force.

    Influence of polydispersity on the phase behavior of statistical multiblock copolymers with Schultz-Zimm block molecular weight distributions

    No full text
    In this paper we investigate in a systematic way the influence of polydispersity in the block lengths on the phase behavior of AB-multiblock copolymer melts. As model system we take a polydisperse multiblock copolymer for which both the A-blocks and the B-blocks satisfy a Schultz-Zimm distribution. In the limit of low polydispersity the expressions for the vertex functions are clarified by using simple physical arguments. For various values of the polydispersity the phase diagram is presented, which shows that the region of stability of the bcc phase increases considerably with increasing polydispersity. The strong dependence of the periodicity of the microstructure on the polydispersity and on the interaction strength is presented

    Influence of polydispersity on the phase behavior of statistical multiblock copolymers with Schultz-Zimm block molecular weight distributions

    Get PDF
    In this paper we investigate in a systematic way the influence of polydispersity in the block lengths on the phase behavior of AB-multiblock copolymer melts. As model system we take a polydisperse multiblock copolymer for which both the A-blocks and the B-blocks satisfy a Schultz-Zimm distribution. In the limit of low polydispersity the expressions for the vertex functions are clarified by using simple physical arguments. For various values of the polydispersity the phase diagram is presented, which shows that the region of stability of the bcc phase increases considerably with increasing polydispersity. The strong dependence of the periodicity of the microstructure on the polydispersity and on the interaction strength is presented.

    Fluctuation Corrections for Correlated Random Copolymers

    Get PDF
    Fluctuation effects on the order-disorder transition (ODT) in correlated random copolymers (polydisperse A/B multiblock copolymers with block lengths having an exponential Flory distribution, and a large average number of blocks per chain) are studied with due regard for the strong temperature dependence of the period of the arising ordered phases, characteristic for the system under consideration. To this end, following a field theoretical variational method, the free energy is minimized with respect to both the concentration profile ψ and the correlation function G, assumed to belong to certain classes of trial functions. The trial function for G contains an extra adjustable parameter as compared to the situation typical for monodisperse A/B block copolymer melts. The shape of the correlation function and its temperature dependence are determined both for the disordered phase and for the ordered phases. In the vicinity of the critical point the phase diagram is calculated and presented in a universal form by using reduced variables. It is shown that near the ODT and for A-monomer fractions f close to 1/2, the profiles are strongly fluctuating: in the ordered phase the amplitude of the fluctuations is equal to the amplitude of the average profile, and in the disordered phase the concentration inhomogeneities are comparable to those in the ordered phase. In the same region the disordered phase has an anomalously large correlation length, indicating some kind of local ordering. In connection with this, we discuss the close relationship between the disordered phase and the random wave structure.
    corecore