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ABSTRACT: Fluctuation effects on the order-disorder transition (ODT) in correlated random copolymers
(polydisperse A/B multiblock copolymers with block lengths having an exponential Flory distribution,
and a large average number of blocks per chain) are studied with due regard for the strong temperature
dependence of the period of the arising ordered phases, characteristic for the system under consideration.
To this end, following a field theoretical variational method, the free energy is minimized with respect to
both the concentration profile ψ and the correlation function G, assumed to belong to certain classes of
trial functions. The trial function for G contains an extra adjustable parameter as compared to the
situation typical for monodisperse A/B block copolymer melts. The shape of the correlation function and
its temperature dependence are determined both for the disordered phase and for the ordered phases.
In the vicinity of the critical point the phase diagram is calculated and presented in a universal form by
using reduced variables. It is shown that near the ODT and for A-monomer fractions f close to 1/2, the
profiles are strongly fluctuating: in the ordered phase the amplitude of the fluctuations is equal to the
amplitude of the average profile, and in the disordered phase the concentration inhomogeneities are
comparable to those in the ordered phase. In the same region the disordered phase has an anomalously
large correlation length, indicating some kind of local ordering. In connection with this, we discuss the
close relationship between the disordered phase and the random wave structure.

1. Introduction
It is well-known that the homogeneous state of

multicomponent polymer mixtures and melts is rarely
stable with respect to the occurrence of considerable
concentration inhomogeneities. Even the presence of
a rather small segregating short-range interaction (usu-
ally described by the Flory-Huggins ø-parameter1)
between the different monomers may result in a con-
siderable spatial rearrangement of the macromolecules
due to the smallness of their translational entropy. For
instance, blends of homopolymers will often undergo
separation into two or more coexisting phases.1,2 Al-
though the compositions of these phases differ from the
overall composition, each phase separately is homoge-
neous. However, before achieving this locally homoge-
neous state, the system exhibits long-lived large-scale
transient inhomogeneities (Cahn-Hilliard waves).
In contrast, melts of monodisperse block copolymers

undergo an order-disorder transition3-5 (ODT), which
requires a rearrangement of the polymer molecules on
length scales of the size of their blocks only and is,
therefore, a much faster process, which results in
thermodynamically stable inhomogeneities having the
symmetry of a crystal group.
Random copolymers form a very interesting interme-

diate class of copolymers revealing a rather peculiar way
of destroying the homogeneous state. As shown first
by Shakhnovich and Gutin,6 mean-field theory predicts
a transition to a microphase-separated state. The
period L of the microstructure was found to be strongly
dependent on the temperature T via L ∝ 1/xTs-T,
where Ts is the spinodal temperature. The period is

anomalously large and approaches infinity at the spin-
odal, which justifies considering the order-disorder
transition in random copolymers within the framework
of the weak segregation approach. The temperature
dependence of L coincides with that of the length of the
Cahn-Hilliard waves appearing during the spinodal
decomposition of the corresponding system of discon-
nected monomers (i.e., the same system, but without
the presence of the chemical bonds). Therefore, it was
suggested in refs 5 and 12 that the spatial structure in
a random copolymer melt below the mean-field transi-
tion temperature may be considered as having the
pattern of the spinodal decomposition in the corre-
sponding system of disconnected monomers, stabilized
due to the presence of the chemical bonds randomly
distributed among these monomers. This physical
picture clarifies the fluctuating disordered nature of the
concentration profile in random copolymer melts (see
below).
In this paper we study the phase behavior of a

correlated random copolymer melt; see refs 11, 19, 20,
22, and 26. In a correlated random copolymer, the
probability of finding a monomer of type R ) A/B
depends on the neighboring monomers along the chain.
We assume a positive chemical correlation, leading to
long sequences of identical monomers. For large values
of the characteristic length l of these sequences, the
mean-field phase diagram has been calculated before19,20
and is presented in Figure 1. The period L of the
microstructure arising in a correlated random copolymer
melt has the same strong temperature dependence26 as
that for the uncorrelated random copolymer. When
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compared with the phase diagrams of monodisperse
regular block copolymers,7,21 the phase diagram of
random copolymers has a much larger region of stability
of the bcc phase, and a bend in the phase boundaries at
the point fA ) fB ) 1/2. (fR is the fraction of monomers
of type R.) As first shown in ref 22, the order-disorder
transition is third order over the entire interval 0.17 <
fA < 0.83, and first order outside this interval.
This mean-field picture needs adjustment when fluc-

tuation corrections are taken into account, which was
done for the first time in ref 10 for the case of uncor-
related random copolymers. Generally, for block co-
polymer melts fluctuations become less important as the
average block length N increases (N ≈ l for a correlated
random copolymer). Consequently, for an uncorrelated
random copolymer (l ≈ 1), the fluctuation corrections
are considerable. One of the consequences is an in-
crease in the region of stability of the disordered phase,
which can be measured by the shift ∆ø > 0 of the phase
transition line. For monodisperse23 regular block co-
polymers ∆(Nø) ∝ N-1/3, whereas for correlated18 ran-
dom copolymers ∆(Nø) ∝ N-1/4. This relatively slow
decrease of the fluctuation corrections is due to a
peculiar property of the free energy of the random co-
polymer: both for correlated and for uncorrelated
random copolymers the dominant contributionH0 to the
Landau Hamiltonian H is degenerate with respect to
the morphology of the microstructure; in other words,
all morphologies have exactly the same value for H0. If
the subdominant contributions to H are neglected, the
fluctuation corrections destroy completely the stability
of the ordered phases, and the disordered phase becomes
thermodynamically stable everywhere, which was proven
mathematically in refs 12, 13, and 16 and via Monte
Carlo simulations in ref 14. For T < Ts (where Ts is

the spinodal temperature) this disordered phase has an
anomalously large correlation length.12 Moreover, al-
though 〈ψ〉 ) 0, the system is far from homogeneous due
to the strong fluctuations. In this respect, the disor-
dered phase for T < Ts resembles a disordered micro-
structure11 (“random wave structure”).
As was shown by Erukhimovich and Dobrynin16,17 by

studying a phenomenological Hamiltonian, the presence
of a small degeneracy-breaking termmakes a transition
to an ordered phase possible. Nevertheless, it was also
shown that a near-degeneracy has implications for the
phase behavior: due to fluctuations, the region of
stability of the disordered phase increases if the degen-
eracy-breaking term becomes smaller. For random
copolymers, the relative magnitude of this term de-
creases to zero on approaching the spinodal, making the
system completely degenerate at the spinodal itself. This
effect accounts for the slow decrease of the fluctuations
in the correlated random copolymer as expressed by ∆-
(Nø) ∝ N-1/4.
This discussion motivates the objective of our paper:

to improve our understanding of the order-disorder
transition in correlated random copolymer melts via a
quantitative treatment of the fluctuation corrections. To
this end, the paper is organized as follows. In section
2 a precise definition of the model will be given. In
section 3 we present a modification of the general
procedure to calculate fluctuation corrections via a
variational approach.24 In section 4 we study the phase
behavior in the limit l f ∞. In section 5 we present
the fluctuation corrections to the phase diagram in the
vicinity of the critical point for large (but finite) values
of l and calculate the amplitude of the fluctuations in
the profiles. The implications of the results obtained
and the conditions of their validity are discussed in the
Conluding Remarks.

2. Model

We consider an incompressible highly polydisperse
multiblock copolymer melt consisting of two sorts of
monomers, denoted by A and B. The statistical segment
lengths a of the A-A, A-B, and B-B bonds are
assumed to be the same, and a/x6 is chosen as the unit
of length. Also the excluded volumes v of the A- and
B-monomers are the same and given by

The average number of blocks per macromolecule is
assumed to be so large that its inverse value may be
neglected. Following ref 11, we describe the monomer
sequence distribution of this multiblock copolymer by
a first-order Markov process characterized by condi-
tional probabilities pRâ, which are defined as the prob-
ability of finding a monomer of type R, given that its
left neighbor is of type â. Since every monomer must
be either of type R or of type â, the conditional prob-
abilities pRâ satisfy the constraints

Equation 2.2 leaves only two independent probabili-
ties: pAA and pBB, which determine an exponential Flory

Figure 1. Mean-field phase diagram for the correlated
random copolymer. Horizontal: A-monomer fraction f. Verti-
cal: rescaled interaction strength lø. Dashed line: third-order
transition. Solid line: first-order transition.

v1/3 ) a
x6

) 1 (2.1)

pAA + pBA ) 1

pAB + pBB ) 1 (2.2)
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distribution of the A- and B-blocks. If wR(n) denotes the
probability that a randomly picked block of type R )
A/B consists of n monomers, then

where nR is the average number of monomers per block
of type R. It is useful to express the two independent
probabilities pAA and pBB in terms of the average
monomer fraction f and the parameter λ characterizing
the chemical correlation between neighboring mono-
mers. To this end, we consider two neighboring mono-
mers and express the probability that the right one is
of type R (which equals, evidently, the average fraction
fR of the monomers of this type) in terms of the two
possibilities for the chemical identity of the left one:

Note that in deriving eq 2.4 it is assumed that there
are no (or negligibly few) monomers having less than
two neighbors. Putting it in other words, the copolymer
chains are assumed to be infinitely long. When written
in matrix notation, eq 2.4 shows that 1 is an eigenvalue
of the matrix pRâ and (fA ) f, fB ) 1 - f) is the
corresponding eigenvector. The other eigenvalue of the
matrix is

The parameters f and λ describe the Markov process
completely. We assume in this paper that the molecules
contain long sequences of like monomers:

Since λ is close to unity, it is more convenient to describe
the sequence distribution in terms of the chemical
correlation length l. It is defined by22

The length l is closely related to the average block
lengths nR, and further on we will refer to l simply as
the “block scale”. With eqs 2.2 and 2.4 the parameter f
can be expressed in terms of pAA and pBB:

All properties of the correlated random copolymer (CRC)
model under consideration can be expressed in terms
of f, l, and the Flory-Huggins parameter ø describing
the interaction between the A- and B-monomers. Real-
izing that the degree of segregation in multiblock

copolymers is determined by the interaction per block
rather than the interaction per monomer, it is more
convenient to characterize it via the parameter

where øs is the spinodal value of ø. For nearly sym-
metric correlated random copolymers it can be approx-
imated by

where øc is the critical value for ø.

3. Theory
In order to calculate the phase diagram, it has to be

determined which state (either disordered or having a
spatial symmetry) is thermodynamically stable for a
given value of f and lø. An ordered state is character-
ized by a nonzero expectation value 〈ψ〉 of the concen-
tration profile ψ defined by

where FA(xb) is the local density of A-monomers. To find
the phase diagram, the free energy is required:

where T is the temperature, kB is Boltzmann’s constant,
and Z is the partition function defined as the integral
over all possible profiles ψ(xb)

where the effective Hamiltonian H[ψ(xb)] is the “virtual”
free energy of the state with given profile ψ(xb). Both
entropic and energetic contributions are included in H.
From here on we restrict ourselves to the weak segrega-
tion regime where, by definition, ψ(xb) is small, which
means that the density FA(xb) differs only slightly from
its average value. In this case, the virtual free energy
may be approximated by its Landau expansion in
powers of ψ. Because of the translational invariance,
this expansion starts at second order:

The tildes on the Fourier transforms will be omitted,
because the distinction between a function and its
Fourier transform will be clear from its argument. The
vertex functions Γn can be expressed in terms of the
correlation functions Gn, which should be averaged
over all molecule types present in the polydisperse
CRC. These correlation functions allow for spatial
and chemical correlations among the monomers A and
B pertaining to the chains forming the CRC. These
chains are assumed to obey Gaussian statistics. This
assumptionsthe famous Flory theoremsis widely ac-
cepted and verified (by theoretical and experimental

wR(n) ) (1 - pRR)pRR
n-1 ≈ e-n/nR

nR

nR )

∑
n

nwR(n)

∑
n

wR(n)
) (1 - pRR)

-1 (2.3)

fA ) fBpAB + fApAA

fB ) fApBA + fBpBB (2.4)

λ ) pAA + pBB - 1 (2.5)

1 - pAA ) nA
-1 , 1 1 - pBB ) nB

-1 , 1

1 - λ ) 2 - pAA - pBB ) nA
-1 + nB

-1 , 1 (2.6)

l ≡ (1 - λ)-1 ) (2 - pAA - pBB)
-1 ) (nA

-1 + nB
-1)-1

(2.7)

f )
1 - pBB

2 - pAA - pBB
(2.8)

t ≡ l (ø - øs) (2.9)

løs = løc ) 1 (2.10)

ψ(xb) ) FA(xb) - 〈FA〉 (3.1)

F(f, ø) ) -kBT ln Z(f, ø) (3.2)

Z ) ∫ δψ exp[-H[ψ(xb)]/kBT] (3.3)

H[ψ] ≈ FL[ψ] ) kBT ∑
n)2

n)4 1

n!
∫ dxb1 ... dxbn ×

Γn(xb1, ..., xbn) ψ(xb1) ... ψ(xbn)

) kBT ∑
n)2

n)4 1

n!Vn
∑
qb1...qbn

Γ̃n(qb1, ..., qbn) ×

ψ̃(-qb1) ... ψ̃(-qbn) (3.4)
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means and by computer simulations) for concentrated
polymer systems far away from the ODT in the disor-
dered state. It may be shown that the non-Gaussian
perturbations of the chains are automatically included
when the fluctuation corrections are calculated via the
variational approach. The vertices Γn for the CRC have
been presented in refs 19, 20, and 22. For the second-
and third-order vertices, the result is

The expression for the fourth-order vertex is more
complicated. Quite generally, for polydisperse systems
it can be written as a sum of two contributions.6,25-27

The first (regular) contribution γ4
reg is just the gener-

alization of the expression of the fourth-order vertex
for monodisperse copolymers. The second contribution
γ4
nl is the nonlocal term, which is only present for
polydisperse systems. Generally, one can write

For the correlated random copolymer, the expressions
for γ4

reg and γ4
nl are given by

Remarkably, the expressions for the third-order vertex
and for the regular part of the fourth-order vertex do
not depend on the angles between the vectors. To
construct the phase diagram in the vicinity of the critical
point, it is necessary to know the vertex functions near
f ) 1/2 only. After the vertex functions are expanded in
powers of ε ≡ f - 1/2, the question arises which terms
in this expansion should be included and which can be
neglected. The answer can be found in the mean-field
phase diagram shown in Figure 1. The transitions
between the various ordered phases take place for
A-monomer fractions that satisfy the scaling |ε| ∝ t ≡
l(ø - øs). Moreover, in the neighborhood of the critical
point, the amplitude A and the inverse period q

*
of the

structure satisfy the scaling A ∝ lq
*
2 ∝ t. It is now clear

that in the weak segregation regime one has to take into
account all terms in the expansion of the free energy
up till the fourth order in the parameters A, lq

*
2, t, and

ε. With this rule, the final expressions are given by

This is a good place to stress two important features of
the Landau Hamiltonian for correlated random copoly-
mer melts:
The minimum of the second vertex γ2(q) is located at

q ) 0, as first shown in refs 6 and 9 for continuous and
discrete copolymer models, respectively.
The fourth vertex contains the “nonlocal term” γ4

nl

presented first in ref 6 and in the most general form in
refs 25 and 26 (see also refs 11 and 27). Due to its 1/q2
dependence, the nonlocal term suppresses the long
wavelength concentration fluctuations in the random
copolymer. Therefore, the tendency to macrophase
separate, which results from the location of the mini-
mum of the second-order vertex7-9 is suppressed and
transformed into the tendency to microphase separate.
This will be discussed in more detail in sections 4 and
5.
If ψj (xb) is defined to be the profile that minimizes FL,

then the partition function Z is determined by the
integration in the vicinity of ψj (xb). In the mean-field
approximation, the contribution to Z of all profiles ψ(xb)
* ψj (xb) is neglected and the free energy is given by

As discussed already in the Introduction, for the cor-
related random copolymer the mean-field approximation
becomes more accurate if the block scale l increases. For
small values of l, the profiles ψ close to ψj will also give
a considerable contribution to the integral given in eq
3.3, and so eq 3.9 for the free energy needs to be
modified. As shown first by Brazovskii28 (see also refs
23 and 29), the corresponding fluctuation corrections for
the weak segregation limit of the ODT can be treated
within the Hartree approximation. An efficient tool to
implement the corresponding calculations is the field-
theoretical variational procedure based on the second
Legendre transformation,30 developed and applied to the
ODT in ref 24. According to this procedure, the exact
value of the free energy with due regard for the
fluctuation corrections may be represented as follows:

If the functional F̃ attains its minimum for {ψ ) ψ0, G
) G0}, then ψ0 is the average profile and G0 is the
renormalized correlation function:

where the brackets 〈···〉 denote a thermodynamic average.
The functional F̃[ψ, G] is defined as follows:

The fluctuation corrections to the free energy in the

γ2(qb) ) 2q2 - 2t
l

γ3(qb1, qb2, qb3) ) 24ε
l

γ4
reg(qb1, qb2, qb3, qb4) ) 24

l
γ4
nl(q2) ) 16

l2q2
+ 8
l

ε ) f - 1
2

t ) l(ø - øc) (3.8)

Fmean-field ) min
{ψ(x)}

FL[ψ] ) FL[ψj ] (3.9)

F ) min
{ψ(xb)},{G(xb,yb)}

F̃[{ψ(xb)}, {G(xb, yb)}] (3.10)

ψ0(xb) ) 〈ψ(xb)〉

G0(xb, yb) ) 〈ψ(xb) ψ(yb)〉 - 〈ψ(xb)〉 〈ψ(yb)〉 (3.11)

F̃[ψ, G] ) FL[ψ] + D[G] + σ[ψ, G] (3.12)

Γ2(qb1, qb2) ) VδK(qb1 + qb2) γ2(q1)
Γ3(qb1, qb2, qb3) ) VδK(qb1 + qb2 + qb3) γ3(qb1, qb2, qb3)

γ2(q) ) 1 + lq2

2lf(1 - f)
- 2ø

γ3(qb1, qb2, qb3) )
(f - 1/2)(3 + lq1

2 + lq2
2 + lq3

2)

2lf2(1 - f)2
(3.5)

Γ4(qb1, qb2, qb3, qb4) ) VδK(qb1 + qb2 + qb3 + qb4) ×
[γ4

reg(qb1 + qb2 + qb3 + qb4) + δK(qb1 + qb2) γ4
nl(q1, q3) +

δK(qb1 + qb3) γ4
nl(q1, q2) + δK(qb1 + qb4) γ4

nl(q1, q2)] (3.6)

γ4
reg(qb1, qb2, qb3, qb4) )

3(5-16f+16f2)+4(1-3f+3f2)(lq1
2+lq2

2+lq3
2+lq4

2)

8lf3(1 - f)3

γ4
nl(q1, q2) )

8f(1 - f) + lq2(3 + lq2)

8lf3(1 - f)3 lq2(1 + lq2)
q2 ≡ q1

2 + q2
2

(3.7)
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“one-loop” approximation are described by the functional

All remaining fluctuation corrections are given by the
functional σ[ψ,G], which is an infinite series of integrals
of powers of ψ and G (the terms in this series may be
described and calculated in accordance with certain
strict rules (“diagram technique”) presented, for in-
stance, in ref 24). In particular, within the framework
of the conventional Brazovskii-Fredrickson-Helfand
approximation, only two terms of the infinite series are
relevant,24 namely

To carry out the minimization procedure of F̃[ψ, G], one
should substitute for ψ and G certain plausible trial
functions containing suitable adjustable parameters,
calculate the integrals appearing in eqs 3.13 and 3.14,
and minimize the obtained expression with respect to
the adjustable parameters. For ψ we take the first
harmonic approximation

For a given lattice symmetry, the summation runs over
the set {QB} of vectors belonging to the first coordination
sphere of the reciprocal lattice. The integer k is half
the number of such vectors, and æQ is the corresponding
phase. The trial function eq 3.15 contains as adjustable
parameters the chosen lattice symmetry of the set of
vectors {QB}, their phases æQ, and their common ampli-
tude A and length Q

*
.

The situation with respect to the choice of the class
of trial functions for G is not so straightforward. The
usual choice is

When using the variational procedure presented, this
choice proved to be suitable for the case of monodisperse
block copolymers where the parameter q

*
is mainly

determined by the architecture of the system and only
slightly depends on the degree of segregation.7-9 In this
case the integrals, eqs 3.13 and 3.14 may be well-defined
despite the fact that they are divergent in the large-q
region.24 This is not the case for the correlated random
copolymer where all parameters c, r, and q

*
are expected

to have a strong temperature dependence. So, in this
paper we use a different class of trial functions for G,
namely

which contains three adjustable parameters F, s, and
q
*
. The influence of the parameters s and F on the

shape of the correlation function Gk(p) is shown in Figure
2. Note that for s > 1 there is some residual forward
scattering, which is due to the polydispersity.36 The
important simplifying assumption for both sets of trial
functions eqs 3.16 and 3.17 is their isotropic form, which
may not be completely correct for the ordered phases.
The advantage of the trial function eq 3.17 is the
possibility of evaluating the position, height, and width
of the peak of the correlation function as independent
parameters, which gives a better estimate for the free
energy. Moreover, its rational form makes it possible
to calculate the integrals in eqs 3.13 and 3.14 analyti-
cally. A final remark concerning the adjustable param-
eters is that, in general, the values of the parameters
Q
*
and q

*
appearing in the trial functions for ψ and G,

respectively, may be slightly different. However, in the
weak segregation limit they will not differ much and
we assume that Q

*
) q

*
. Therefore, both the position

of the maximum scattering in the system, and the
periodicity of the microstructure are determined by one
and the same parameter q

*
.

Further on, the expression forG(xb) is required as well.
Straightforward calculation shows that it is an expo-
nentially decaying sine given by

G(xb) is characterized by two length scales: Rosc ) 1/aq
*
,

which is proportional to the period of the oscillations,
and Rcor ) 1/bq

*
, which is the correlation length.

4. Phase Behavior in the Limit of Infinite
Average Block Length
In this section we study the ordered phases and the

disordered phase in the region of the phase diagram,
which is defined by the following two criteria: (1) the
system is weakly segregated; (2) the fluctuations in the
ordered phases are negligible. The first condition
implies that the distance to the critical point is not too
large, and the second implies that it is not too small.
The first is satisfied by taking small values for ε and t,
whereas the second can only be satisfied at the same
time if the fluctuation region is small, which will be the
case if l is large. Therefore, in this section we consider
the limit l f ∞, in which case the second criterion is
satisfied for all ε > 0, t > 0.
The purpose of this paragraph is to find the shape of

the correlation function G(q) and to describe the super-
cooled disordered phase. Although for the ordered
phases the mean-field theory is exact in the limit l f
∞, in order to obtain information about the correlation

D ) 1
2V ∫ dxb1 dxb2 Γ2(xb1, xb2) G(xb1, xb2) -

1
2V

Tr ln G(xb1, xb2) (3.13)

σ[ψ, G] = D1 + D2 (3.14)

D1 ) 1
8V ∫ dxb1 dxb2 dxb3 dxb4 Γ4(xb1, xb2, xb3, xb4) ×

G(xb1, xb2) G(xb3, xb4) (3.14a)

D2 ) 1
4V ∫ dxb1 dxb2 dxb3 dxb4 Γ4(xb1, xb2, xb3, xb4) ×

G(xb1, xb2) ψ(xb3) ψ(xb4) (3.14b)

〈ψ(xb)〉 ) A
xk ∑

QB

eiQB‚xb+æQ (3.15)

G-1(qb) ) c(q - q*)
2 + r (3.16)

G-1(q) ) 2q*
2(p2 + s2

p2 - 1 + s
- 1 - s + F) ≡

2q*
2Gk-1(p) p ≡

q

q*
(3.17)

G(xb) )
se-bq

*
x

16πa b x
sin[aq*x + æ] æ ) arccos[1 - F

2s]
a )
x1 - F/2 + x1 - F + Fs

x2

b )
x-1 + F/2 + x1 - F + Fs

x2
(3.18)
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function it is nevertheless necessary to take the (neg-
ligible) fluctuation corrections into account, because the
mean-field free energy does not depend on G(q).
Ordered Phases. To be able to determine which

terms in the free energy expansion have to be included
and which can be neglected, we assume that the adjust-
able parameters A, q

*
, F and s satisfy the scaling laws

The scaling behavior for A and q
*
was already derived

in refs 19, 20, and 22, whereas the scaling relations for
F and s will be verified by the fact that the subsequent
calculations result in explicit expressions for the pa-
rameters F and s, which indeed satisfy eq 4.1. In the
free energy expansion in powers of l-1, we keep only
the leading mean-field contribution F0 (which is inde-
pendent of F and s) and the next term F1:

With the vertex functions given in eq 3.8, the mean-
field contribution F0 can be written down:

The parameters µ and λ depend on the morphology of
the microstructure. For the lamellar, cylindrical, bcc
phase, and the random wave structure11 they are given
by

The random wave structure (also called the disordered
microstructure) proposed in ref 11 is defined as the
structure having the following form of the concentration
profile 〈ψ〉:

with the vectors QB randomly distributed over the unit
sphere. The phases æQ are also random. The number
2k of vectors QB in the first coordination sphere ap-
proaches infinity. Since the vectors QB have random di-
rections, there are no triples adding up to zero, and
therefore, the third-order coefficient µ is zero. To find the
fourth-order coefficient λ, one has to identify the qua-
druples (QB1, QB2, QB3, QB4) satisfying ∑QB i ) 0, where QB i
belongs to the first coordination sphere. Since the
vectors QB have random directions, the only quadruples
satisfying this condition are of the form (QB1, -QB1, QB2,
-QB2), or (QB, QB, -QB, -QB). The number of ordered
quadruples of the first type is equal to 4!k(k - 1)/2,
whereas the number of quadruples of the second type
is equal to 6k. Due to the fact that the regular part
γ4
reg of the fourth-order vertex does not depend on the
angles between the vectors (see eq 3.7 and refs 19 and
20), the corresponding value of λ can be written down
easily:

When the free energy eq 4.3 is minimized with respect
to the parameters A and q

*
, the result is (up to the

adopted accuracy)

Because of the inequality λlam < λran, the free energy of
the random wave structure is never below that of the
lamellar structure, and therefore, the random wave
structure can exist only as a metastable state. Equation
4.7 for the free energy of the ordered phases shows that
in the (ε, t)-plane near the critical point the phase
transition lines separating the regions of stability of the
different phases are straight lines. The slope of these
lines can be found by solving the equations F0(lam) )
F0(cyl) and F0(bcc) ) F0(cyl). It follows19,20

The corresponding mean-field phase diagram is shown
in Figure 1. As presented in ref 22, the analysis of the
free energy further away from the critical point shows
that the transition from the disordered phase to the bcc
phase is a third-order transition not only in the critical
point but in the interval fc < f < 1 - fc, with fc ) 0.173.
Thus, it is only a matter of convention that we refer to
(ε ) 0, t ) 0) as the critical point.
The leading order fluctuation correction F1 is the sum

of the contributions D and D2 defined by eqs 3.13 and
3.14b; it is calculated in Appendix A. The term D1 can

Figure 2. Influence of the parameters F and s on the shape
of the correlation function. Horizontal: rescaled q-value p ≡
q/q

*
.

lim
kf∞

1
4!k2V

(4!k(k - 1)
2

Γ4(QB1, -QB1, QB2, -QB2) +

6kΓ4(QB, QB, -QB, -QB)) ) 1
2V

Γ4(QB1, -QB1, QB2, -QB2) )

4
l2q*

2
+ 16

l
w λran ) 16 (4.6)

A0 ) t

3x2
+ µ|ε|t - λt2

54x2
lq0

2 ) A0 x2

lF0 ) - t3

27
+ λ t4

324
-
2x2 µ|ε|t3

9
(4.7)

tnm
|ε| )

l(ønm - øc)| f - 1
2 | ) 72 x2 µn - µm

λn - λm
≈

{3.247 for the bcc/cyl border
9.798 for the cyl/lam border

(4.8)

A ∝ l0, q* ∝ l-1/2, F ∝ l0, s ∝ l0 (4.1)

F ) F0(A, q*) + F1(A, q*, F, s) + O(l-2)

F0 ∝ l-1 F1 ∝ l-3/2 (4.2)

lF0 ) 2(lq2 - t)A2 + 4A4

lq2
- 24µ|ε|A3 + λA4

(4.3)

µlam ) 0 µhex ) 2/3x3 µbcc ) 4/3x6 µran ) 0

λlam ) 10 λhex ) 14 λbcc ) 19 λran ) 16 (4.4)

〈ψ(xb)〉 ) A
xk ∑

QB

exp(QB‚xb + æQ) (4.5)
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be neglected in this section because it is proportional
to l-2, which follows from (A3) and (A4), using eq 4.1.
The expressions for D and D2 are given in terms of the
integrals I4, I6, and I9 evaluated in Appendix B:

According to the assumption eq 4.1, F reaches a finite
value in the limit l f ∞ and the exact expressions (B7)-
(B9) for I4, I6, and I9 have to be used. The mean-field
values F0 and s0 for the parameters F and s can be found
from the equations obtained by inserting the mean-field
values of eq 4.7 for A and q

*
into F1 and subsequently

minimizing with respect to F and s:

Solving eq 4.10 gives for all microphase-separated
structures under consideration

which, after substitution of the expression eq 4.7 for A0,
gives up to the adopted accuracy

Note that for phases with λ > 16 (such as the bcc phase)
the value of F decreases with the increasing value of t,
meaning that the fluctuations increase. At a certain
point the value of F approaches zero, which implies that
the phase becomes unstable with respect to a phase
transition to another phase. To discuss the results
obtained, we take as an example the lamellar phase for
f ) 1/2. Then the solutions of eqs 4.7 and 4.12 reduce to

satisfying the original assumption eq 4.1 concerning the
scaling with l of the adjustable parameters. According
to Figure 2, s ) 2 implies that the system exhibits a
residual forward scattering due to the presence of
concentration fluctuations on arbitrarily long length
scales36 (in monodisperse incompressible block copoly-
mers such scattering is completely suppressed). The
result for q* is more clear when it is rewritten in terms
of the characteristic correlation length d ≡ 2π/q

*
(for

the ordered phases d is just the period of the micro-
structure):

which simply corresponds to the temperature depen-
dence of the Cahn-Hilliard wavelength characterizing
the pattern of the early stage of spinodal decomposition
in the corresponding system of disconnected polydis-
perse blocks:

It supports the idea that near the spinodal the thermo-
dynamically stable microphase-separated structure in
random copolymers can be regarded as a spinodal de-
composition pattern, stabilized due to the presence of the
chemical bonds. Finally, the parameter F determines
(together with s) both the height and the width of the
scattering peak; see Figure 2. It follows from eq 4.13 that
the peak is high and sharp near the critical point and
becomes lower and broader on increased segregation.
Supercooled Disordered Phase. It is instructive

to analyze the disordered phase for t > 0, l f ∞. Since
〈ψ〉 ) 0, the free energy Fdis is just the sum of the
fluctuation corrections D and D1. Let the l-scaling of
the parameters F, q

*
, and s characterizing the correla-

tions in the disordered phase be

Then, up to leading order in l-1, the free energy of the
disordered phase is

Minimization with respect to the adjustable parameters
is straigthforward. The resulting equilibrium values of
these parameters and the free energy expanded to
fourth order in t are given by

The fluctuation corrections prevent the instability of the
disordered phase. According to eq 4.18 in combination
with Figure 2, the peak in the correlation function of
the disordered phase becomes higher and sharper the
more the system is moving off the spinodal t ) 0 into
the region of stability of the ordered phases, which is
just the opposite behavior as that for the ordered phases.
As will be shown in the next section, for finite (though
large) values of l the above analysis is only valid for
t-values satisfying t . l-1/4, and in this region the scat-
tering peak in the correlation function of the disordered
phase stays sharp due to the l-1t-3-dependence of F.
Remarkably, for t > 0 and l f ∞ the free energy of

the disordered phase and the free energy of the ordered
phases not only have the same l-dependence, but are
even equal to leading order in t. Moreover, the free
energy of the disordered phase turns out to coincide with
the free energy of the random wave structure to fourth
order in t. This similarity between the supercooled dis-
ordered phase and the random wave structure can be
extended even more. Consider the quantity ∫ dxb 〈ψ2(xb)〉,
which is a measure of the amplitude of the concentration
inhomogeneities. For all ordered phases it is given by

F1 )
q*
8π2l

(q*
2l I4 - tI6) + A2

π2l2q*
(I9 + 2q*

2lI6) (4.9)

∂F1(A0, q0, F, s)
∂F

) 0
∂F1(A0, q0, F, s)

∂s
) 0 (4.10)

F0 ) 8A0 x2 + 3 - t

A0x2
s0 ) 2 (4.11)

F0 )
(16 - λ)t

6
+ 9µ|ε|x2 s0 ) 2 (4.12)

Alam ) t

3x2
lqlam

2 ) t
3

Flam ) t slam ) 2

(4.13)

d ) 2πx3
x(ø - øs)

(4.14)

LCH )
2πx2
x(ø - øs)

(4.15)

F ∝ l-1 q* ∝ l-1/2 s ∝ l0 (4.16)

Fdis )
s

64π2l2F
+

s q2

16π2lF
+
s1/2 q3

8πF1/2
-

ts1/2 q

8πlF1/2
(4.17)

lqdis
2 ) t

3
Fdis ) 27 s

64π2lt3
lFdis ) - t3

27
+ 4t4

81
(4.18)

1
V ∫ dxb 〈ψ2(xb)〉 = 1

V ∫ dx 〈ψ(xb)〉2 )

A2

k ∑
QB1QB2

1
V ∫ dx exp(i(QB1 + QB2)‚xb) ) 2A2 = t2

9
(4.19)
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In the first step, use is made of the fact that the ordered
phases are not fluctuating in the limit l f ∞ (in fact,
δψ/ψ ∝ l-1/4). For the disordered phase it follows
similarly

where eqs B5 and B14 of Appendix B have been used.
Equations 4.19 and 4.20 show that the amplitude of
the concentration inhomogeneities in the supercooled
disordered state is equal to the amplitude of the
concentration inhomogeneities in any of the ordered
phases.

5. Fluctuation Corrections to the Phase
Diagram

In this section we incorporate the fluctuation correc-
tions for nearly symmetric correlated random copoly-
mers in the vicinity of the order-disorder transition,
both for the disordered phase and for the ordered
phases. In this region of the phase diagram, the fluctu-
ation corrections are expected to be large. In the mean-
field approximation, the order-disorder transition takes
place at t ) 0. Due to the fluctuation corrections, this
value is expected18 to shift upward according to

The purpose of this section is the construction of the
phase diagram near the critical point, and the deter-
mination of the magnitude of the fluctuations in the
profiles. In order to be able to do rigorous calculations,
we assume that l is large, and in the calculations we
take the limit l f ∞. However, there is an important
difference with the previous section, where this limit
was taken by keeping the point (ε, t) fixed. If l increases,
the fluctuation region shrinks, and the point (ε, t) has
to move toward the critical point in order to stay in the
region of interest. This can be accomplished by taking
the limit l f ∞ under fixed values of the rescaled
parameters t̃ and ε̃, which are defined by

In parallel with the analysis given in section 4, we
assume scaling laws for the adjustable parameters A,
q
*
, F and s that will be verified by the fact that the

subsequent calculations result in explicit expressions for
these parameters satisfying these laws. However, in
the region considered now, these scaling laws are
different from eq 4.1, namely:

Disordered Phase. For nearly symmetric correlated
random copolymers close to the order-disorder transi-
tion, the free energy Fdis of the disordered phase can

be written as a power series in l-1/8:

To keep all these terms is necessary since, as will be
shown below, the free energies of the disordered phase
and the various ordered phases turn out to differ only
by the terms of the order l-16/8. The only contributions
to Fdis are D and D1. Since F approaches zero when l
approaches infinity (eq 5.3), it is justified to use the
expansion of the diagrams in powers of F (see Ap-
pendices A and B)

In order to make the l-dependence of the parameters
explicit, it is convenient to define rescaled parameters
x̃, q̃, and F̃, which reach a finite limit for l f ∞, as fol-
lows

In terms of these quantities, the expression for F0
simplifies to

Minimization with respect to q̃ and x̃ yields

The second contribution F1
dis is proportional to l-15/8.

Using the expressions given in Appendices A and B one
obtains

After substitution of the solution eq 5.8 for x̃, this
rearranges to

Minimization with respect to s gives

Since up to this order the free energies of the disordered
phase and the ordered phases will turn out to be equal,
it is necessary to calculate F2

dis as well, containing the
terms proportional to l-16/8. There are two contribu-
tions. The first one, F2a

dis, consists just of those terms
in the expansion of D and D1 that have the proper

1
V ∫ dxb 〈ψ2(xb)〉 ) 〈ψ2(xb)〉 ) 〈ψ2(xb)〉 - 〈ψ(xb)〉2 )

1
(2π)3
∫ dqb G(qb) )

q*
8π2 ∫-∞

∞
dp p2Gk(p) )

q*I6

8π2
=
s1/2q*
8πF1/2

= t2

9
(4.20)

tODT ∝ l-1/4 (5.1)

t̃ ≡ l1/4t ε̃ ) l1/4ε (5.2)

F ∝ l-1/4 s ∝ l0

A ∝ t ∝ l-1/4 q*
2 ∝ ø - øs ≡ t

l
∝ l-5/8 (5.3)

Fdis ) F0
dis + F1

dis + F2
dis

F0
dis ∝ l-14/8 F1

dis ∝ l-15/8 F2
dis ∝ l-16/8 (5.4)

F0
dis ) s

64π2l2F
+
q*

3s1/2

8πF1/2
-
q*t s

1/2

8πlF1/2
(5.5)

F̃ ) l1/4F x̃ ) s1/2

8πF̃1/2
q̃ ) l5/8q* (5.6)

F0
dis ) 1

l14/8
(x̃2 + q̃3x̃ - q̃t̃x̃) (5.7)

q̃2 ) t̃
3

x̃ ) q̃3 (5.8)

F0
dis ) - t̃3

27 l14/8
(5.9)

F1
dis ) 1

8πl15/8
((1 - s)x̃ + x̃

s
+
(s - 1)x̃

s
+
2q̃3(s - 1)3/2

3 )
(5.10)

F1
dis )

q̃3

8πl15/8
(2 - s +

2(s - 1)3/2

3 ) (5.11)

s ) 2 F1
dis ) t̃3/2

36πx3l15/8
(5.12)
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scaling with l. Substituting the results for s, q̃, and x̃
gives

The second contribution F2b
dis arises from the fact that

the equilibrium values of eqs 5.8 and 5.12 for the
parameters s, q̃, and x̃ providing the minimum of the
isolated terms of eqs 5.7 and 5.11 should be corrected
to give the minimum of their sum in eq 5.4, the
magnitude of the correction as compared to the major
contribution being of the order l-1/8. The effect of this
discrepancy is

with x1 ) s, x2 ) q̃, x3 ) x̃. Summarizing, the equilib-
rium values of the rescaled parameters in eq 5.6 for the
disordered phase are finite (which verifies the assump-
tion in eq 5.3 concerning their l-scaling) and given
by

and the complete t̃-dependence of Fdis is given by

Lamellar Phase. The free energy of the ordered
phases contains the mean-field contribution FL as well
as the fluctuation corrections D, D1, and D2 (see Ap-
pendices A and B). We assume that, for the parameters
q
*
, s, and F of the lamellar phase, the scaling laws given

in eq 5.3 hold. Then F lam may be expanded in powers
of l-1/8:

The minimization with respect to the amplitude A is
straightforward. The free energy contains terms pro-
portional to A2, arising from the mean-field contribution
FL and the fluctuation correction D2 and terms propor-
tional to A4 arising from FL. Very important is the sign
of the quadratic coefficient. If it is positive, minimiza-
tion with respect to A leads to A ) 0, which returns to
the analysis for the disordered phase. In the following
it will be assumed that it is negative, leading to a
nonzero value for A. Afterward it will be verified under
which conditions this assumption is correct. To leading
order in l, this coefficient (we will refer to it as τeff) is
given by

Under the assumption that eq 5.18 is negative, the

minimization with respect to A is straightforward and
leads to

Note that F0 depends only on q̃, F1 depends on both q̃
and s, and F2 depends on all three parameters q̃, s, and
F̃. This fact simplifies the minimization procedure.
Since F0 is the dominant contribution to the free energy,
the value of q̃ will be determined by F0. Minimization
of F0 with respect to q̃ leads to

which is the same result as for the disordered phase,
eqs 5.8 and 5.9. Inserting this value for q̃ into the
expression for F1

lam and then minimizing with respect
to s give

again the same result as for the disordered phase given
in eq 5.12, which is the reason the terms proportional
to l-2 have to be calculated as well. Now there are three
contributions. The first one is calculated by inserting
the expressions for q̃ and s (eqs 5.22 and 5.23) into the
first two terms of eq 5.21:

The second one is (see the comment above eq 5.14)

The third contribution results from the F̃-dependent
terms in eq 5.21. With the expressions for q̃ and for s
(eqs 5.22 and 5.23), this contribution is

Collecting all the terms, the total free energy Flam is

F2a
dis ) 1

l2( 7
128π2

+ 4t̃4

81) (5.13)

F2
dis ) - 1

2
∂F1

dis

∂xi (∂2F0
dis

∂xi∂xj)
-1
∂F1

dis

∂xj
) - 1

192π2l2
(5.14)

sdis ) 2 F̃dis ) 27
32π2t̃3

q̃dis
2 ) t̃

3
(5.15)

Fdis ) - t̃3

27l14/8
+ t̃3/2

36πx3l15/8
+ 19
384π2l2

+ 4t̃4

81l2

(5.16)

F lam ) F0
lam + F1

lam + F2
lam

F0
lam ∝ l-14/8 F1

lam ∝ l-15/8 F2
lam ∝ l-16/8

(5.17)

τeff ) (2(q̃2 - t̃) + s1/2

2πq̃F̃1/2) l-5/4 (5.18)

F0
lam ) -

q̃2(t̃ - q̃2)2

4l14/8
(5.19)

F1
lam )

q̃(q̃2(-6 + 4(s - 1)3/2 + 3s) + 3t̃(2 - s))

48πl15/8
(5.20)

F2
lam )

5q̃4(t̃ - q̃2)2

8l2
+ 2π - 8s + 4πs + 4s2 - πs2

256π3l2
-

3 sq̃2

128π2l2F̃
+
3q̃3s1/2(t̃ - q̃2)

16πl2F̃1/2
+

q̃s1/2(-q̃2 - 2sq̃2 + 3t̃)F̃1/2

32πl2
(5.21)

q̃lam
2 ) t̃

3
F0
lam ) - t̃3

27l14/8
(5.22)

slam ) 2 F1
lam ) t̃3/2

36πx3l15/8
(5.23)

F2a
lam ) 5t̃4

162l2
+ 3
128π2l2

(5.24)

F2b
lam ) -

1

2
∑
i,j

∂F1
lam

∂xi
(∂2F0

lam

∂xi∂xj
)-1

∂F1
lam

∂xj
)

-
1

192π2l2
(5.25)

F2c
lam ) t̃

12x6l2π(-3
x6
16π

1
F̃

+ t̃3/2

F̃1/2
+ t̃1/2F̃1/2) (5.26)
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obtained as a function of t̃ and F̃

This expression still has to be minimized with respect
to F̃. It is important to note that the domain of defini-
tion of the function g(F̃) is bounded by the condition

necessary to have a nonzero equilibrium value of the
amplitude A. Using eq 5.18 for τeff together with the
values of slam and qlam shows that this condition is
equivalent to

In Figure 3, the function g(F̃) given in eq 5.27 is shown
for three values of t̃. The point on the curve corre-
sponding to the disordered phase is marked dis, whereas
the point corresponding to the lamellar phase is marked
lam. In Figure 3a the lamellar phase is stable, in Figure
3b it is metastable, and in Figure 3c it loses stability.
The values of t̃ for which this happens can easily be
extracted from eq 5.27. Going back from t̃ to the orig-
inal parameter ø, the results can be summarized as
follows:

In order to show that everywhere in the phase diagram
the disordered phase is at least metastable, we calculate
the slope of the function g(F̃) at the point F̃ ) F̃dis:

Since this is positive for all values of t̃, there is always
an energy barrier between the disordered state and the
lamellar state, which proves our assertion. For the
range of t̃-values t̃ > 0.872 for which the lamellar phase
is (meta-)stable, the F̃-dependent part g(F̃) of the free
energy in eq 5.27 can be minimized rigorously. The
result is

For large values of t̃ the expression for F simplifies
to

which coincides with the mean-field value derived in
section 4, eq 4.13.
Structures Other Than Lamellar. In order to

calculate the free energy for other microstructures,
note that they can be expanded in powers of l-1/8 as
well:

Figure 3. Dependence of the free energy of the lamellar phase
(lam) on the value of the parameter F̃ for three distinct values
of the rescaled interaction t̃. The free energy of the disordered
phase is indicated as well (dis). (a) The lamellar phase is
completely stable. (b) The lamellar phase is metastable. (c) The
lamellar phase loses stability.
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- t̃3

27l14/8
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ø - øc > 0.909l-5/4 the lamellar phase is stable

0.909l-5/4 > ø - øc > 0.872l-5/4

the lamellar phase is metastable
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After minimization with respect to the amplitude A, the
expressions for F0 and F1 prove to be independent of
the type of structure and are given by eqs 5.22 and 5.23,
respectively. Therefore, the parameters q

*
and s de-

termined by the minimization of F0 and F1, respectively,
have the same values for all structures (to leading order
in l). Thus, the differences in the free energies of the
various structures are completely due to F2. Inserting
the values for q

*
and s, one obtains F2 as a function of

F̃ for general values of µ and λ.

where A0(F̃) is the equilibrium amplitude value given a
fixed value for the parameter F̃. Remarkably, for the
random wave structure, which has µ ) 0 and λ ) 16,
the second and fifth term on the right hand side vanish
and the only F̃-dependence comes from the third term.
Therefore, for the random wave structure, the free
energy decreases continuously with a decrease of F̃ to
the lower bound of its domain of definition eq 5.28. At
that point, the amplitude A is zero, and the values of
the free energy and of the parameters F̃, s, and q

*coincide with those for the disordered phase, eqs 5.15
and 5.16. We can conclude that the random wave
structure is completely unstable with respect to a
transition to the disordered phase (so it is not even
metastable).
For general values of µ and λ, F2 as given by eq 5.34

must be minimized with respect to F̃. In order to
construct the phase diagram in the plane t̃ ) l1/4 (lø -
1) versus ε̃ ) l1/4 (f - 1/2), the minimum values of F2 are
calculated numerically and compared for the various
ordered structures, which results in the phase diagram
shown in Figure 4. To visualize the fluctuation correc-
tions better, the mean-field phase transition lines lam/
cyl and cyl/bcc are presented in the same figure by
dashed lines.
As can be seen from the phase diagram, the larger

the distance to the critical point, the closer the phase
transition lines are to their mean-field approximations.
For the phase transition lines between the various
ordered phases, the fluctuation corrections decay much
faster than for the transitions from the disordered phase
into an ordered phase. It is worthwhile to note also that
for the correlated random copolymers the “windows”
where the disorder-order transition occurs into the
lamellar or hexagonal phase (respectively for |ε̃| <
0.0624 and 0.0624 < |ε̃| < 0.133) are fairly small when
compared with the corresponding windows found in ref
23 for the monodisperse diblock copolymers.
Fluctuations in the Profiles near the ODT.

Although for the construction of the phase diagram
shown in Figure 4 the fluctuation corrections have been
taken into account, this phase diagram shows only the

average profiles 〈ψ〉. Due to the presence of the fluctua-
tions, the instantaneous profile ψ is different from the
average profile. The difference between these profiles
is largest in the vicinity of the critical point. In order
to get an idea about the magnitude of the fluctuations,
we calculate, for f ) 1/2 at the phase transition point t̃
) 0.909, the quantity 〈ψ2〉 both in the lamellar phase
and in the disordered phase. Note that 〈ψ2〉 includes
automatically the contribution from the fluctuations.
For the lamellar phase we have

The first contribution is due to the fluctuations, and the
second contribution is due to the average profile. Since
these contributions are equal, the amplitude of the
fluctuations δψ in the profile is equal to the amplitude
of the average profile 〈ψ〉. This implies that the profile
is strongly fluctuating and rather irregular. For the
disordered phase the corresponding result is

Comparing eq 5.35 with eq 5.36 shows that, for f = 1/2
at the ODT, the amplitude of the concentration inho-
mogeneities in the disordered phase is equal to the
amplitude of the concentration inhomogeneities in the

F ) F0 + F1 + F2

F0 ∝ l-14/8 F1 ∝ l-15/8 F2 ∝ l-16/8 (5.33)

l2F2 ) 7
384π2

+ (λ - 16)( t̃
384π2F̃

- t̃5/2

72x6πF̃1/2) +

t̃3/2F̃1/2

12x6π
+ λt̃4

324
- 24µ|ε̃|A0

3(F̃)

A0(F̃) ) ( t̃218 - t̃1/2

8x6πF̃1/2)
1/2

(5.34)

Figure 4. Phase diagram for a correlated random copolymer
melt in the vicinity of the critical point fc ) 1/2, øc ) 1/l taking
the fluctuation corrections into account. Horizontal: rescaled
A-monomer fraction ε̃ ≡ l1/4(f - 1/2). Vertical: rescaled interac-
tion strength t̃ ≡ l5/4 (ø - øc). Dashed lines are mean-field
boundaries.

〈ψ2〉lam ≡ 1
V ∫ dxb 〈ψ2 (xb)〉 ) 1

V ∫ dxb (〈ψ2 (xb)〉 -

〈ψ(xb)〉2 + 〈ψ(xb)〉2)

) 1
(2π)3
∫ dqb G(qb) + 1

V ∫ dxb 〈ψ(xb)〉2 )

s1/2q*
8πF1/2

+ 2A2 |
t̃)0.909

) (0.046 + 0.046)l-1/2 (5.35)

〈ψ2〉dis ) 〈ψ2(xb)〉 ) 1
(2π)3
∫ dqb G(qb) )

s1/2q*
8πF1/2 |t̃)0.909) 0.092l-1/2 (5.36)
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ordered phase (it was shown in section 4 that this
remains true for stronger segregations, but then the
disordered phase is metastable). Therefore, the disor-
dered phase is far from homogeneous. We can conclude
that in this region of the phase diagram the various
phases look similar. This suggests that near the ODT
the disordered phase has the appearance of a disordered
microphase-separated structure (the random wave struc-
ture, which is, however, itself unstable). This similarity
is confirmed also by the properties of the correlation
function in the disordered phase. In eq 3.18 an expres-
sion was obtained for the correlation function G(xb) in
real space. G(xb) is an exponentially decaying sine,
characterized by two length scales: the period Rosc of
the oscillations and the correlation length Rcor. In the
disordered phase near the ODT, the values of s and F
satisfy s ) 2 and F ∝ l-1/4 , 1 (eq 5.3). Inserting this
into eq 3.19 leads to a = 1, b = xF/2 , 1, and so

Therefore, the correlation function exhibits a large
number of oscillations before it vanishes, which means
that locally the disordered phase appears to have some
kind of ordering (see also ref 12, where the same result
was obtained for a melt of uncorrelated random copoly-
mers).

6. Concluding Remarks
Summarizing, a quantitative theory has been pre-

sented for the phase behavior of correlated random
copolymer melts with due regard for the fluctuation
corrections. By doing so, it was shown that the order-
disorder transition occurs into thermodynamically stable
microstructures having the conventional bcc, cylindrical,
and lamellar symmetry and that the so-called random
wave structure (a nonperiodic microstructure) is un-
stable; see Figure 4. The almost symmetric correlated
random copolymer was shown to undergo a direct phase
transition from the disordered phase to the lamellar or
the cylindrical phase. The width ∆f of the corresponding
sections of the phase transition line decreases with
increasing block length l as ∆f ∝ l-1/4.
For the interpretation of the phase diagram Figure 4

it is important to realize that it gives only information
about the average profiles, whereas the instantaneous
profiles will be rather different due to the fluctuations.
For instance, for f ) 1/2 at the order-disorder transition,
all phases are strongly fluctuating: in the ordered
phases the amplitude of the fluctuations equals the
amplitude of the average profile, and in the disordered
phase the concentration inhomogeneities have the same
amplitude as those in the ordered phases. This similar-
ity between the disordered phase and the ordered
phases (especially the random wave structure) in this
region of the phase diagram is also confirmed by the
fact that the disordered phase has an anomalously large
correlation length, giving the phase a kind of local
ordering.12,37 In connection with this it is interesting
to note that for t > 0 in the limit l f ∞ the free energy
of the random wave structure coincides with the free
energy of the disordered phase. However, it should be
born in mind that strictly speaking these phases are
different: 〈ψ〉 ) 0 for the disordered phase, whereas 〈ψ〉
* 0 for the random wave structure. Moreover, it follows
from eq 5.34 that the random wave structure is com-
pletely unstable (at least within the approximation used

in this paper). Since for correlated random copolymer
melts the fluctuation corrections are considerable even
for rather large values of the chemical correlation length
l, we suspect that the experimentally observed disor-
dered structure in random copolymers is in fact a
strongly fluctuating disordered phase.37
The last point to be discussed is related to the

fundamental notion of thermodynamic equilibrium in
the system under investigation. In this paper, the
procedure to construct the phase diagram implies that
the system remains in a single phase, and the possibility
of separation into coexisting phases was neglected.
However, it follows from the Hamiltonian25,26 eq 3.5 that
the phase diagram given complete thermodynamic
equilibrium contains certain two-phase strips separating
the one-phase regions. This was shown by straightfor-
ward calculation for a polydisperse diblock copolymer
melt in ref 27 (see also ref 31). Allowing for the
possibility of macrophase separation into coexisting
phases could be important, and for the correlated
random copolymer its effect can be calculated, for
instance, via straightforward application of the Pan-
yukov-Kuchanov methods32,33 or by making use of the
detailed densities theory.27,34 In the mean-field ap-
proximation these strips were shown to be rather
narrow, except for the transition from the disordered
state.33 However, even if the conditions are such that
the true equilibrium corresponds to the situation where
the system is separated into coexisting phases, the
polymer chains must diffuse over macroscopic distances
in order to achieve this situation. As was shown
recently,35 the diffusion time τdif in random copolymer
systems scales with the molecule length N like τdif ∝
exp[xN]. Therefore, since we considered the system in
the limit N f ∞, it would take an infinite amount of
time for the system to reach equilibrium. In order to
reach a microphase-separated state, it is not necessary
for the chains to diffuse as a whole, since a local
adaptation of their conformations will be sufficient. In
conclusion, we can say that for experimental random
copolymer systems, perfect thermodynamic equilibrium
might never be reached, and the phase diagram shown
in Figure 4 represents what is going on in real sys-
tems, notwithstanding the fact that in some parts of the
(f, ø) plane it only gives a metastable state. A more
detailed discussion of this problem will be given else-
where.34
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Appendix A
In this appendix the fluctuation corrections to the free

energy, given in eqs 3.13 and 3.14, are calculated using
the trial functions eq 3.15 for the concentration profile
ψ and eq 3.17 for the correlation function G. It is
convenient to rewrite eq 3.17 as follows:

Rcor . Rosc (5.37)

Gk(p) )
p2 + s - 1

((p - a)2 + b2)((p + a)2 + b2)
(A1)

a )
x1 - F/2 + x1 - F + Fs

x2

b )
x-1 + F/2 + x1 - F + Fs

x2
(A2)
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Rewrite eq 3.14a as D1 ) D1
a + D1

b, where

For the definition and the evaluation of the integrals
I1, I2, and I3, the reader is referred to Appendix B. The
second contribution D1

b to D1 is

For D2, defined in eq 3.14b, the result is D2 ) D2
a +

D2
b, where

Finally, the contribution D has to be calculated:

For the calculation of the trace, see ref 24. One ob-
tains

Both integrals in eq A8 are divergent. However, these
divergencies can be removed by adding functions to the
integrands that do not depend on the parameters A, q

*
,

F, and s.

Appendix B.
In this appendix the expressions for the integrals I1,

I2, I3, I4, I6, and I9 used in Appendix A are given. These
integrals are defined by

The integrals I6 and I1 are not convergent; however,
their derivatives with respect to F and s are convergent.
The procedure is to calculate these derivatives and,
afterward integrate them, which comes down to sub-
stracting an infinite constant. In section 4, exact
expressions for I4, I6, and I9 are needed:

In section 5 we need the diagrams only in the limit F f
0, so it is sufficient to give the Taylor expansion of the

D1
a ≡ 1

128π6l2
∫ dpb1 dpb2

Gk(pb1) Gk(pb2)

p1
2 + p2

2

) 1
64π5l2
∫ dpb Gk(p)

π(s - 1 + 2yp + x1 - F + Fs)

2b((p + b)2 + a2)

) 1
32π3l2b

∫0∞ dp ×
p2(p2 + s - 1)(s - 1 + 2yp + x1 - F + Fs)

((p - a)2 + b2)((p + a)2 + b2)((p + b)2 + a2)

)
I3

32π3l2
+

I1
16π3l2

+
(s - 1)I2
16π3l2

(A3)

D1
b )

q*
2

16π4l (∫-∞

∞
dp p2Gk(p))2 )

q*
2I6

2

16π4l
(A4)

D2
a ) A2

π2l2q*
∫-∞

∞
dp

p2Gk(p)

1 + p2
) A2

π2l2q*
I9 (A5)

D2
b )

2A2q*
π2l

I6 (A6)

D ) 1
2V ∫ dxb1 dxb2 Γ2(xb1, xb2) G(xb1, xb2) -

1
V
Tr ln G(xb1, xb2)

) 1
2

1
(2π)3
∫-∞

∞
dq 2πq2 (Γ2(q) G(q) - ln G(q)) (A7)

D ) 1
2

1
(2π)2
∫-∞

∞
dq q2(2q2G(q) - ln G(q)) -

1
2

1
(2π)2

t
l ∫-∞

∞
dq q2G(q) (A8)

D ) 1
2

1
(2π)2
∫-∞

∞
dq q2[2q2G(q) - 1 - ln(2q2G(q))] -

1
2

1
(2π)2

t
l ∫-∞

∞
dq q2[G(q) - 1

2q2]
) 1
2

q*
3

(2π)2
∫-∞

∞
dp p2(p2Gk(p) - 1 - ln p2Gk(q)) -

1
(2π)2

t
l

q*
2 ∫-∞

∞
dp p2(Gk(p) - 1

p2)
)
q*

3

8π2
I4 -

tq*
8π2l

I6 (A9)

I1)∫0∞dp
p5

((p - a)2 + b2)((p + a)2 + b2)((p + b)2 + a2)
(B1)

I2)∫0∞dp
p3

((p - a)2 + b2)((p + a)2 + b2)((p + b)2 + a2)
(B2)

I3 )

1
b ∫0∞dp

p2(p2 + s - 1)(s - 1 + x1 - F + Fs)

((p - a)2 + b2)((p + a)2 + b2)((p + b)2 + a2)
(B3)

I4 ) ∫-∞

∞
dp p2(p2Gk(p) - 1 - ln p2Gk(p)) (B4)

I6 ) ∫-∞

∞
dp p2Gk(p) (B5)

I9 ) ∫-∞

∞
dp

p2Gk(p)

1 + p2
(B6)

I4
π

)
2(s - 1)3/2

3
+

- 1 - 2F + F2 + 6s - 2Fs + (1 + F - 3s)x1 - F + Fs

3x2x-1 + F/2 + x1 - F + Fs
(B7)

I6
π

) 1 - F + s - x1 - F + Fs

x2 x-1 + F/2 + x1 - F + Fs
(B8)

I9
π

)

1+ s-2

1+x1- F + Fs+x2x-1+ F/2+x1- F + Fs

x2x-1+ F/2+x1- F + Fs
(B9)
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integrals in powers of F. The integrals I1, I2, and I3 have
to be expanded till order zero, whereas I4, I6, and I9 have
to be expanded till order one-half:
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I2
π
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- π + 2
8π
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I3
π

) s
2F

+
(1 - s) s1/2

2F1/2
+
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8π
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I4
π

) s1/2

F1/2
+
2(s - 1)3/2

3
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8s1/2
F1/2 + O(F)

(B13)
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π

) s1/2
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