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Abstract. The subject of this paper is inspired by microphase-separated copolymer melts in which a
small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can
arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock copolymer
or a comb copolymer. Due to the presence of the large-scale structure, the chains are stretched. The
aim of this paper is to investigate the influence of this chain stretching on the formation of the small-scale
structure. To gain insight we study infinite melts of infinitely long copolymer chains that are subjected to a
stretching force. For melts of monodisperse multiblock copolymers we find that the stretching destabilizes
the homogeneous phase. If the stretching is strong, the lamellar structure is the only stable structure.
The periodicity increases with the degree of stretching. For melts of monodisperse comb copolymers the
chain stretching has no influence on the stability of the homogeneous phase. If the stretching is strong, the
lamellar structure and the hexagonal structure are the only stable structures. The periodicity is independent
of the degree of stretching. For the multiblock copolymer we investigated the influence of block length
polydispersity. For small polydispersity the period of the structure increases monotonically with the degree
of stretching. For intermediate polydispersity, the period initially decreases before it starts to increase. For
large polydispersity, the mean-field period at the spinodal is infinite, becoming finite once the stretching
force exceeds some critical value. For very large polydispersity the mean-field period at the spinodal remains
infinite for any value of the stretching force.

PACS. 82.35.Jk Copolymers, phase transitions, structure – 89.75.Fb Structures and organization in com-
plex systems – 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling

1 Introduction: Microphase separation at two
length scales

The subject of this paper is inspired by microphase-
separated copolymer melts in which a small-scale struc-
ture is present inside one of the phases of a large-scale
structure. There are several copolymer architectures that
give rise to such a complicated microstructure. An exam-
ple is a diblock copolymer where one of the blocks is a
homopolymer with monomers of type C, while the other
block is either a comb copolymer with monomers of types
A and B, or a multiblock copolymer with monomers of
types A and B, see Figure 1 for illustration. When the
temperature is lowered starting from the homogeneous
phase, a transition to a microphase-separated state may
occur. Most likely this transition will separate the C-
monomers from the A- and B-monomers, leading to a mi-
crostructure characterized by a large length scale. When
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the temperature is lowered further, a second phase transi-
tion may occur, one that will separate the A-monomers
from the B-monomers. This will lead to a small-scale
structure inside the copolymeric phase of the large-scale
structure (see Fig. 2; electron microscope image). An in-
teresting possibility that has attracted a lot of attention
lately [1–4] is to attach the side chains of the comb copoly-
mer block to the backbone by means of reversible hydro-
gen bonds.

The second-order vertex function (which gives infor-
mation about the position of the spinodal and about the
weak-segregation periodicity) has already been calculated
in the situation where the homopolymer block is chem-
ically identical to one of the species of the copolymer
block [5,6]. It was shown that under certain conditions
the vertex function has two minima. One of these corre-
sponds to the separation of the homopolymer block from
the copolymer block (large length scale), while the other
corresponds to the separation inside the copolymer block
(small length scale). If both minima are present, the two
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(a)

(b)

Fig. 1. Schematic picture of a diblock copolymer consisting of
a homopolymer block and either a comb copolymer block (a)
or a multiblock copolymer block (b). A melt consisting of such
molecules can have a microstructure with two length scales.

100 nm

Fig. 2. Experimental example of a two–length-scale mi-
crostructure for a comb-coil diblock copolymer consisting of
a supramolecular comb copolymer block P4VP(PDP), ob-
tained by hydrogen bonding of pentadecylphenol (PDP) to
poly(4-vinylpyridine) (P4VP), and a homopolymer block of
polystyrene. Courtesy of Janne Ruokolainen (from Ref. [2]).

microstructures will be formed more or less simultane-
ously, leading to interesting problems concerning interfer-
ence and commensurability.

In the present paper we consider quite a different
regime, namely, the regime where the large-scale struc-
ture is already fully formed when the small-scale structure
arises. We will also assume that the ratio between the two
length scales is large. The presence of the strongly seg-
regated large-scale structure will cause the chains to be
stretched. We are interested in the influence of this chain
stretching on the formation of the small-scale structure.
The degree of chain stretching will vary within the do-
mains of the large-scale structure. Nevertheless, if the pe-
riod of the large-scale structure is much larger than the
period of the small-scale structure, the degree of stretch-
ing is more or less constant across several periods of the
small-scale structure. In this situation, the local small-
scale structure may be found by considering a melt of in-

finitely long copolymer chains, each of which is subjected
to the same stretching force working on its end points.

An important question is whether experimentally the
degree of stretching is a free parameter that can be chosen
at will. The answer is affirmative: the degree of stretch-
ing can be tuned by varying the total degree of polymer-
ization, keeping the local architecture of the copolymeric
part the same. The larger the degree of polymerization,
the weaker the stretching. This statement can be veri-
fied in the following way. In the strong-segregation regime,
the period L of the microstructure varies with the degree
of polymerization N as L ∝ aN2/3, where a is the sta-
tistical segment length. This implies that the chains are
stretched [7]. A stretched chain can be visualized as a lin-
ear array of Gaussian blobs, each containing g-monomers.
The number of blobs is equal to N/g, while the size of one
blob is equal to ag1/2. We can now determine g via

N

g
ag1/2 ∼= L ∼= aN2/3 ⇒ g ∼= N2/3 . (1)

Equation (1) shows that the blobs become larger when
N increases, and larger blobs imply weaker stretching. By
making the molecules long enough, the degree of stretch-
ing can be made arbitrarily small. Weak stretching will be
defined by the condition that one blob contains more than
one repeating unit of the comb copolymer or the multi-
block copolymer, where a repeating unit is defined as an
A-block plus a B-block in case of a multiblock copolymer,
and as a side chain plus the corresponding piece of the
backbone in case of a comb copolymer.

2 Mono-disperse case

Much about the phase behavior can already be deduced
from the second-order vertex function Γ (�q ) [8,9]. It has
two important characteristics: its minimum value 2χs, and
the set of vectors �q for which Γ (�q ) = 2χs. In case there
is no stretching force, this set has the shape of a spheri-
cal shell that can be fully characterized by its radius q0.
Both χs, and q0 have physical interpretations: χs is the
spinodal value of the χ-parameter, and 2π/q0 is very close
to the period of the weakly segregated microstructure. If
a stretching force �F is applied, the spherical symmetry
is broken, but the vertex function will remain symmetric
with respect to rotations around the direction of the force.
This means that one can write Γ (�q ) = Γ (q, θ), where q is
the length of �q, and θ is the angle between �F and �q. In the
Appendix it is shown how Γ (q, θ) can be calculated for
a multiblock copolymer melt for general block length dis-
tributions; see references [10–12] for the calculation of the
second-, third- and fourth-order vertex functions in the ab-
sence of a stretching force. Appendix A shows that Γ (q, θ)
depends on θ only through the combination F cos θ. This
means that for �q-vectors that are perpendicular to �F , the
vertex function has the same value as in the absence of
chain stretching. We will use this important feature later
on in the calculation of the phase diagram of the comb
copolymer melt.
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2.1 Multiblock copolymers

We will consider first a melt of monodisperse multiblock
copolymers. Calculations show that in the presence of a
stretching force, the second-order vertex function looses
its spherical symmetry and attains its absolute minimum
in two discrete points ±�q0 in Fourier space. This means
that if the χ-parameter is gradually increased from zero,
the homogeneous melt starts loosing its stability only with
respect to two Fourier modes ψ(�q0) and ψ(−�q0). When the
stretching is strong enough, these minima are deep, and
the only stable structure will be the lamellar structure,
because any other structure involves Fourier modes with
respect to which the system is still stable. This means that
it is not necessary to calculate the higher-order vertices in
order to conclude that the lamellar structure has a lower
free energy than the other structures. This situation is to
be contrasted with the situation in the absence of chain
stretching, when the homogenous melt looses stability si-
multaneously with respect to all Fourier modes lying in
a spherical shell. In that case, all structures are equiva-
lent up to second order in the free-energy expansion, and
higher-order vertices have to be calculated in order to find
out which structure is stable. In this respect, the presence
of chain stretching simplifies matters.

The location of the spinodal in the (f, χ)-plane (where
f is the composition, i.e. the fraction of monomers of type
A) is determined by the minimum value of the vertex func-
tion. It turns out that if the strength of the stretching force
increases, the minimum of the vertex function decreases,
meaning that the spinodal shifts downwards in the (f, χ)-
plane. In other words, the stretching destabilizes the ho-
mogeneous phase. In order to find the exact location of the
binodal corresponding to the transition from the homoge-
neous phase to the lamellar phase, we would have to calcu-
late the vertex functions up to fourth order. However, we
believe that it would not be worthwhile to delve into these
calculations, because the difference between the calcu-
lated binodal and the calculated spinodal would be much
smaller than the difference between the calculated binodal
and the experimental binodal. This is because the model
used in this paper is a qualitative model, aimed at provid-
ing a description on a coarse-grained level only. Therefore,
we did not calculate the binodal, and in Figure 3b we used
the spinodal as an approximation to the binodal. The cal-
culation has been done for F̃ 2 ≡ NF 2 = 1, where N is the
number of monomers in one repeating unit of the multi-
block (= A-block plus B-block). For this choice of F , one
blob of the stretched chain contains roughly one repeating
unit. Figure 3a presents the phase diagram in the absence
of stretching. It has been calculated using all vertices up
to the fourth order. For the calculation of these vertices
we refer to [10–12]. The main results of our analysis of the
monodisperse multiblock copolymer melt are that chain
stretching has the following effects:
– The binodal shifts downwards in the (f, χ)-plane,
– When the force is sufficiently strong, only the lamellar

structure is stable,
– The period of the microstructure increases with in-

creasing chain stretching.
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Fig. 3. a) Phase diagram of a multiblock copolymer in the
absence of chain stretching. b) Phase diagram of multiblock
copolymer in the presence of chain stretching, for F̃ = 1. All
phases other than lamellar disappear. The binodal has been
approximated by the spinodal. Horizontal: A-monomer frac-
tion. Vertical: χ-parameter multiplied by the average number
of monomers per block.

2.2 Comb copolymers

We will contrast the phase behavior of monodisperse
multiblock copolymer melts with that of monodisperse
comb copolymer melts. Also in this case the second-order
vertex function Γ (�q ) looses its spherical symmetry in the
presence of chain stretching. The vertex attains its mini-
mum on a circle in Fourier space. The radius of this circle
is independent of the degree of the stretching, while the
plane of the circle is perpendicular to the direction of the
stretching. When the χ-parameter is gradually increased
from zero, the homogeneous melt becomes unstable with
respect to the formation of microstructures whose lattice
vectors lie on this circle. Such structures are either one-,
or two-dimensional. Making use of experience with weak-
segregation melts in the absence of chain stretching, we
choose to consider only the lamellar structure and the
hexagonal structure. In order for the lattice vectors to lie
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Fig. 4. a) Phase diagram of comb copolymer in the absence
of chain stretching. b) Phase diagram of comb copolymer
in the presence of chain stretching. Horizontal: A-monomer
fraction. Vertical: χ-parameter multiplied by the average
number of monomers per repeating unit. Figures provided by
Rikkert Nap.

on the above-mentioned circle, the structures have to be
oriented. The lamellas of the lamellar structure, and the
cylinders of the hexagonal structure, have to be parallel to
the direction of stretching. In order to draw the phase di-
agram, we need the vertices up to the fourth order. Calcu-
lating the general expressions for the higher-order vertices
in the presence of chain stretching would be a formidable
task, because we cannot make use of spherical symmetry
anymore. Luckily, we need not calculate these general ex-
pressions in order to be able to draw the phase diagram.
This is due to the fact that if all Fourier vectors �q1, �q2,
. . . , �qn are perpendicular to the direction of stretching,
then Γ (�q1, �q2, . . . , �qn) is the same as it would be in the
stretch-free case (see App. A). Since all Fourier modes of
the oriented lamellar and the oriented hexagonal structure
are perpendicular to the direction of stretching, the free
energy of the oriented lamellar phase and the free energy
of the oriented hexagonal phase can be calculated using
the vertices of the stretch-free case. These vertices have
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Fig. 5. Curves delineating regions of different behavior of the
position of the minimum of the scattering function with in-
creasing degree of stretching. The classification of the regions
I, II, III and IV has been given in the text.

been calculated in [6], and making use of these results we
arrived at the phase diagrams shown in Figures 4a and b.

3 Polydisperse multiblock copolymer

Next, we consider the influence of chain stretching on the
phase behavior of melts of polydisperse multiblock copoly-
mers. We study the situation where both the A-blocks,
and the B-blocks have a Schultz-Zimm distribution [10,
12]. This distribution is defined in equation (A.15) of the
Appendix. It has two independent parameters by which
both the mean, and the standard deviation can be chosen
independently. In the calculations we assumed that the A-
and B-blocks have the same polydispersity. The results
will be presented in the (f, k)-plane, where f is the frac-
tion of A-monomers, and k is the inverse polydispersity,
defined by

1
k
=

nw

nn
− 1. (2)

Here nn, nw denote the number and weight average
chain lengths. First, we consider the situation where no
stretching force is present. In the region defined by

k �
√
1 + 12f − 12f2 (3)

the vertex function attains its minimum at q0 = 0 (see,
e.g., [10]). In Figure 5, this region corresponds to regions I
and II combined. In regions III and IV, the vertex function
attains its minimum at q0 > 0. When in Figure 5 the
value of k is increased for a fixed value of f , then starting
from region III the value of q0 increases monotonically, and
reaches a finite value in the monodisperse limit k → ∞.

Stretching the chains can change both q0 and χs (re-
member that these parameters refer to the absolute mini-
mum of Γ (�q )). In order to find out whether it is possible
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that q0 becomes non-zero in regions I or II, or that it be-
comes zero in regions III or IV, we calculated the slope of
Γ (q, θ) at the origin. The result is

∂Γ (q, θ)
∂ (q2)

∣∣∣∣
q=0

=
1
4x

− k2 − 1
48x2

+
1 + 2x+ 24x2 − (1 + 2x) k2

24kx2
F̃ 2 cos2 θ . (4)

Here we have defined

x = f (1− f) , (5)

F̃ 2 =
n̄

6

(
Fa

kBT

)2

= n̄F 2 , (6)

n̄ = nA + nB (7)

with nα the average length of blocks of type α = A,B.
In equation (6) we used our special choice for the units
of length and energy (see App. A). Note that F̃ is the
stretching force in natural units: when F̃ = 1, each blob
of the stretched chain contains roughly one block of the
multiblock. The important property is the sign of the co-
efficient c of F̃ 2 in equation (4). In region I we have c > 0.
This means that in this region, q0 will stay zero for all F̃ .
Since Γ (q = 0) is independent of F̃ , we can deduce that
in region I the position of the spinodal is independent of
F̃ . In region II, q0 = 0 when F̃ = 0, but since c < 0,
q0 will deviate from zero, and the spinodal value of the
χ-parameter will decrease, once F̃ exceeds some critical
value. In regions III and IV, q0 > 0 when F̃ = 0. Since
in these regions c < 0, we conclude that q0 > 0 for all
F̃ . One can show that the spinodal value of χ decreases
with increasing F̃ , i.e. the chain stretching destabilizes the
system. A very interesting property of region III is that
on increasing F̃ from zero, the periodicity q−1

0 of the sys-
tem decreases first, before it starts to increase again at
larger values for F̃ . Unfortunately, we have not been able
to find an intuitive, convincing reason why this should be
the case. In region IV, the periodicity increases with F̃ for
all values of F̃ .

4 Suggestion for further research

An interesting and much studied copolymer system is the
correlated random copolymer (see, for instance, [10]). The
block lengths of a random copolymer have an exponential
distribution, which is equivalent to a Zimm-Schultz dis-
tribution with k = 1, and arbitrary 0 < f < 1. Judging
from Figure 5, all random copolymers belong to region I.
This means that q0 = 0 for any value of the stretching
force F̃ , and that the spinodal does not shift. In order to
find the influence of stretching on the microstructure pe-
riodicity, the so-called non-local contribution to the free
energy has to be calculated. This would be an interesting
exercise, because it is not obvious beforehand whether the
periodicity would increase or decrease.

The authors thank Janne Ruokolainen for providing Figure 2
(cf. Ref. [2]), and R. Nap for providing Figures 4a and b.

Appendix A. The second-order vertex
function

Consider the bead-spring model of a polymer chain. A
stretching force �F working on the end points of the chain
can be incorporated by adding a factor exp(�F ·�r/kT ) to the
single-bond distribution function. If the Fourier transform
of the single-bond distribution function in the absence of
a force is given by [13]

g0(�q ) = e−a2q2/6 , (A.1)

where the statistical segment length a is a measure for
the average distance between two consecutive monomers
along the chain, then the normalized Fourier transform of
the single-bond distribution function in the presence of a
force is given by

g (�q ) = e−a2(q2−2i 	F ·	q/kT) /6 . (A.2)

Adopting units in which kT = 1 and a2 = 6, and
denoting the angle between �F and �q by θ, we obtain

g (�q ) = e−(q2−2iFq cos θ) . (A.3)

The single-bond distribution function g(�q ) is the ba-
sic building block for the calculation of the correlation
functions, which are needed to find expressions for the
vertex functions. For a polydisperse copolymer melt con-
taining two monomer types A and B, the second-order
vertex function is given by

γ(�q ) =
gAA(�q ) + gAB(�q ) + gBA(�q ) + gBB(�q )

gAA(�q )gBB(�q )− gAB(�q )gBA(�q )
− 2χ.

(A.4)
In order to define the correlation functions gαβ(�q ),

where α and β are variables taking on the values A or
B, we need first some definitions. Let s denote a molecule
type (that is, an ordered sequence of A’s and B’s), and let
Ns be the number of monomers in a molecule of type s. Let
ρs be proportional to the total number of molecules of type
s in the melt, normalized in such a way that

∑
ρsNs = 1.

Define the function σα
si in the following way: σα

si = 1 if the
i-th monomer in a molecule of type s is of type α, and
σα

si = 0 otherwise. Using these definitions, the correlation
functions gαβ(�q ) can be written as follows:

gαβ(�q ) =
∑

s

ρsg
s
αβ(�q ) , gs

αβ(�q ) =
Ns∑

i,j=1

σα
siσ

β
sjgij(�q )

(A.5)
gij(�q ) = g(�q )j−i , if i < j ,

gij(�q ) = g(�q )i−j = g∗(−�q )i−j , if i > j .
(A.6)

Here ∗ denotes the complex conjugate. Note that in
the presence of a stretching force, g(�q ) need not be real.
It turns out to be convenient to define

hαβ(�q ) =
∑

s

ρs

∑
i<j

σα
siσ

β
sjg

j−i(�q ) , (A.7)
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so that
gαβ(�q ) = hαβ(�q ) + h∗αβ(�q ) . (A.8)

We wish to calculate the second-order vertex func-
tion for a melt of stretched polydisperse AB -multiblock
copolymers. Let Q 
 1 be the number of A-blocks in
the molecule, which equals the number of B-blocks. Let
Pα(n) be the length distribution of the blocks of type α.
Let ni denote the length of the i-th A-block, and mi the
length of the i-th B-block. For this system a molecule type
can be specified by giving the lengths of all blocks, that
is, s := {n1, n2, ..., nQ;m1,m2, ...,mQ}. Using the normal-
ization condition

∑
ρsNs = 1, we find

ρs =
1

Q(nA + nB)
PA(n1)...PA(nQ)PB(m1)...PB(mQ) .

(A.9)
First, we will calculate hAA. The double summation

over i and j present in equation (A.7) can be split into
two parts, h(1)

AA and h
(2)
AA. The first part h

(1)
AA is defined as

the sum over all pairs (i,j), where i and j are present in
the same block. Its value can be obtained by restricting
the summation to monomers that are both present in the
k-th block for arbitrary k, and multiplying the result with
Q. It should be noted that this factor Q is cancelled by
the factor 1/Q present in the normalization constant for
ρs, see equation (A.9). We obtain

h
(1)
AA = n̄

(
αz − 1
z2

+
f

z

)
, (A.10)

where f is the fraction of A-monomers in the melt, n̄ =
nA +nB , and nα =

∫
dnPα(n)n is the average number of

monomers in a block of type α. The variable z is defined by

z = y − 2iF̃
√
y cos θ ,

y = n̄q2 ,

F̃ 2 = n̄F 2

(A.11)

and αz is the Laplace transform of the length distribution
of the A-blocks:

αz =

∞∫
0

dnPA(n)e−
nz
n̄ . (A.12)

Note that the condition of weak stretching, as defined
in the introduction, corresponds to F̃ � 1. To obtain the
second contribution h

(2)
AA, the summation is restricted to

monomers that are present in different blocks. Generally,
the contribution from any pair (i, j) decreases exponen-
tially with the distance (j− i) along the chain, and so the
contribution from pairs for which this distance is much
larger than q−2 is negligible. Since the relevant q-values
are determined by the block length distributions and not
by the total number of blocks, it follows that for large Q
the monomers have to be relatively close together in order
to give a non-negligible contribution to the summation.
Consequently, the main part of h(2)

AA is proportional to Q,

and not to Q2, despite the presence of the double summa-
tion. It can be calculated by considering a molecule con-
taining infinitely many blocks, picking any block in which
we place the first monomer, summing over all possibilities
for the block in which the second monomer is present, in-
tegrating over all positions of the monomers within their
blocks, integrating over all possible block lengths, and
adding a factor Q. As before, this factor will be cancelled
by the factor 1/Q present in the normalization constant
for ρs. The final result is

h
(2)
AA = n̄

βz

1− αzβz

(1− αz)
2

z2
, (A.13)

where βz is the Laplace transform of the length distribu-
tion of the B-blocks. The second factor in equation (A.13)
arises from the summation over the number of blocks that
are present between the block containing i, and the block
containing j, while the third factor is due to the integra-
tion over all possible positions of the monomers within
their blocks. Adding the two contributions together we
find

hAA

n̄
= − (1− αz) (1− βz)

(1− αzβz) z2
+
f

z
. (A.14)

The expression for hBB can now be found by substitut-
ing f → 1−f . Finally, we have to find expressions for hAB

and hBA. In fact, these expressions turn out to be iden-
tical in the limit Q → ∞. This is due to the fact that
the molecule type s1 = {n1, n2, ..., nQ;m1,m2, ...,mQ}
gives the same contribution to hAB as its mirror image
s2 = {nQ, nQ−1, ..., n1;mQ,mQ−1, ...,m1} to hBA, while
they have the same frequency of occurrence in the melt.
It follows from equation (A.8) that, gAB like gAA and gBB ,
is a real-valued function. We obtain

hAB

n̄
= − (1− αz) (1− βz)

(1− αzβz) z2
. (A.15)

The expression for the second-order vertex function
can now be found by applying equations (A.8) and (A.4).
It remains to find expressions for the Laplace transforms
αz and βz of the probability distributions. For the Schultz-
Zimm distribution, which is defined by

Pα(n) =
kke−kn/nα nk−1

Γ (k)nk
α

, Γ (k) =

∞∫
0

dne−nnk−1 ,

(A.16)
we have

αz =
(
1 +

fz

k

)−k

, (A.17)

βz =
(
1 +

(1− f) z
k

)−k

, (A.18)

where k, the inverse polydispersity, has been defined in
equation (3). The expressions for αz and βz for the
monodisperse distribution can be obtained by taking the
limit k → ∞, leading to

αz = e−fz , (A.19)

βz = e−(1−f)z . (A.20)
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