21 research outputs found

    How Metal/Insulator Interfaces Enable the Enhancement of the Hydrogen Evolution Reaction Kinetics in Two Ways

    Full text link
    Laterally nanostructured surfaces give rise to a new dimension of understanding and improving electrochemical reactions. In this study, we present a peculiar mechanism appearing at a metal/insulator interface, which can significantly enhance the Hydrogen Evolution Reaction (HER) from water reduction by altering the local reaction conditions in two ways: facilitated adsorption of hydrogen on the metal catalyst surface and improved transfer of ions through the double layer. The mechanism is uncovered using electrodes consisting of well-defined nanometer-sized metal arrays (Au, Cu, Pt) embedded in an insulator layer (silicon nitride), varying various parameters of both the electrode (size of the metal patches, catalyst material) and the electrolyte (cationic species, cation concentration, pH). In addition, simulations of the electrochemical double layer are carried out, which support the elaborated mechanism. Knowledge of this mechanism will enable new design principles for novel composite electrocatalytic systems

    Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis

    Get PDF
    Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release

    Interrogation of Biological Samples by ToF-SIMS

    Get PDF
    Mass spectrometry is a very versatile and important technique in analytical chemistry. From atomic bombs to Alzheimer’s disease, after a century of improvements and developments there are now countless applications for mass spectrometry in research and industry. One important branch within the field is imaging mass spectrometry as it combines chemical and location specific information. Lipids, the main building blocks of cell membranes, are found in all living, cellular organisms. They are a diverse group of molecules, fulfilling structural and signal transduction functions. Right at the interface between the extra and intracellular environment, they are an important means of fast communication, they build a barrier to keep the cell alive, can promote cell death or indicate cellular changes in general. As different parts of organisms fulfil different functions, so is the distribution of lipids within organisms highly heterogeneous, indicating that each lipid has a role to play at its specific location. To study the distribution of lipids, imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a well suited technique as it has a high sensitivity for detecting lipids and can detect lipid distributions on a sub-cellular scale in biological samples. As with any technique, ToF-SIMS has some drawbacks, for example it can be highly destructive so analysed lipids are fragmented and the molecular information is lost, there is a trade-off between spatial resolution and molecular information and the signal detected depends highly on the ionisation efficiency of different species, as well as their surroundings, which can skew the results. ToF-SIMS is a vacuum technique which presents challenges for biological sample handling and every analysis is only as good as the sample that is analysed. To improve upon those aspects, getting more intact molecules at higher resolutions, improving sample preparation, work towards understating matrix effects and study the overall applicability of ToF-SIMS for biological samples was the scope of this thesis

    High energy gas cluster ions for organic and biological analysis by time-of-flight secondary ion mass spectrometry

    No full text
    There is considerable excitement surrounding the application of gas cluster ion beams (GCIBs) for SIMS analysis in order to study organic materials and biological samples such as cells and tissues. These ion beams, that often comprise several thousand argon atoms in the primary ion, have been used mainly for the etching of organic materials to remove damage from the surface allowing molecular depth profiling experiments to be performed. The energy of the ion beam is normally 2–20 keV. There have been relatively few studies reported on the use of GCIB as analysis beams, due to difficulties related to fast pulsing and focusing of the beam along with the sometimes low ionisation efficiency. In this study, we report on the use of a new higher energy (40 keV) GCIB operated in a continuous mode. When compared to lower energies depth profiles on thin films of Irganox 1010 show an increase in sputter yield signal while fragmentation, damage accumulation and ionisation efficiency remains unchanged. Experiments on brain tissues show increased signal levels especially for higher mass secondary ions (m/z 500+) in comparison to C60+ at 40 keV and Ar4000+ at 20 keV impact energy. The use of higher energies facilitates better focusing of the primary ion beam as demonstrated here on a human hair sample where we achieve a spatial resolution o

    Investigating the Role of the Stringent Response in Lipid Modifications during the Stationary Phase in E. coli by Direct Analysis with Time-of-Flight-Secondary Ion Mass Spectrometry

    No full text
    Escherichia coli is able to rapidly adjust the biophysical properties of its membrane phospholipids to adapt to environmental challenges including starvation stress. These membrane lipid modifications were investigated in glucose starved E. coli cultures and compared to a ΔrelAΔspoT (ppGpp0) mutant strain of E. coli, deficient in the stringent response, by means of time-of-flight-secondary ion mass spectrometry (TOF-SIMS). Recent advances in TOF-SIMS, through the implementation of gas cluster ion beams (GCIBs), now permit the analysis of higher mass species from native, underivatized, biological specimen, i.e., intact bacterial cells. Cultures in stationary phase were found to exhibit a radically different lipid composition as compared to cultures in the exponential growth phase. Wild-type E. coli reacted upon carbon starvation by lipid modifications including elongation, cyclopropanation, and increased cardiolipin formation. Observations are consistent with variants of cardiolipins (CL), phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidic acids (PA), and fatty acids. Notably, despite having a proteomic profile and a gene expression profile somewhat similar to the wild-type during growth, the ppGpp0 mutant E. coli strain was found to exhibit modified phospholipids corresponding to unsaturated analogues of those found in the wild-type. We concluded that the ppGpp0 mutant reacts upon starvation stress by elongation and desaturation of fatty acyl chains, implying that only the last step of the lipid modification, the cyclopropanation, is under stringent control. These observations suggest alternative stress response mechanisms and illustrate the role of the RelA and SpoT enzymes in the biosynthetic pathway underlying these lipid modifications

    Significant Enhancement of Negative Secondary Ion Yields by Cluster Ion Bombardment Combined with Cesium Flooding

    No full text
    In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment

    Improved Molecular Imaging in Rodent Brain with Time-of-Flight-Secondary Ion Mass Spectrometry Using Gas Cluster Ion Beams and Reactive Vapor Exposure

    No full text
    Imaging mass spectrometry has shown to be a valuable method in medical research and can be performed using different instrumentation and sample preparation methods, each one with specific advantages and drawbacks. Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) has the advantage of high spatial resolution imaging but is often restricted to low mass molecular signals and can be very sensitive to sample preparation artifacts. In this report we demonstrate the advantages of using gas cluster ion beams (GCIBs) in combination with trifluoracetic acid (TFA) vapor exposure for the imaging of lipids in mouse brain sections. There is an optimum exposure to TFA that is beneficial for increasing high mass signal as well as producing signal from previously unobserved species in the mass spectrum. Cholesterol enrichment and crystallization on the sample surface is removed by TFA exposure uncovering a wider range of lipid species in the white matter regions of the tissue, greatly expanding the chemical coverage and the potential application of TOF-SIMS imaging in neurological studies. Ar<sub>4000</sub><sup>+</sup> (40 keV) in combination with TFA treatment facilitates high resolution, high mass imaging closing the gap between TOF-SIMS and matrix-assisted laser desorption ionization (MALDI)

    Lipid Heterogeneity Resulting from Fatty Acid Processing in the Human Breast Cancer Microenvironment Identified by GCIB-ToF-SIMS Imaging

    No full text
    Breast cancer is an umbrella term used to describe a collection of different diseases with broad inter- and intratumor heterogeneity. Understanding this variation is critical in order to develop, and precisely prescribe, new treatments. Changes in the lipid metabolism of cancerous cells can provide important indications as to the metabolic state of the cells but are difficult to investigate with conventional histological methods. Due to the introduction of new higher energy (40 kV) gas cluster ion beams (GCIBs), time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is now capable of providing information on the distribution of hundreds of molecular species simultaneously on a cellular to subcellular scale. GCIB-ToF-SIMS was used to elucidate changes in lipid composition in nine breast cancer biopsy samples. Improved molecular signal generation by the GCIB produced location-specific information that revealed elevated levels of essential lipids to be related to inflammatory cells in the stroma, while cancerous areas were dominated by nonessential fatty acids and a variety of phosphatidylinositol species with further in-tumor variety arising from decreased desaturase activity. These changes in lipid composition due to different enzyme activity are seemingly independent of oxygen availability and can be linked to favorable cell membrane properties for either proliferation/invasion or drug resistance/surviva

    Optimizing sample preparation for anatomical determination in the hippocampus of rodent brain by ToF-SIMS analysis

    No full text
    Lipidomics has been an expanding field since researchers began to recognize the signaling functions of lipids and their involvement in disease. Time-of-flight secondary ion mass spectrometry is a valuable tool for studying the distribution of a wide range of lipids in multiple brain regions, but in order to make valuable scientific contributions, one has to be aware of the influence that sample treatment can have on the results. In this article, the authors discuss different sample treatment protocols for rodent brain sections focusing on signal from the hippocampus and surrounding areas. The authors compare frozen hydrated analysis to freeze drying, which is the standard in most research facilities, and reactive vapor exposure (trifluoroacetic acid and NH3). The results show that in order to preserve brain chemistry close to a native state, frozen hydrated analysis is the most suitable, but execution can be difficult. Freeze drying is prone to produce artifacts as cholesterol migrates to surface, masking other signals. This effect can be partially reversed by exposing freeze dried sections to reactive vapor. When analyzing brain sections in negative ion mode, exposing those sections to NH3 vapor can re-establish the diversity in lipid signal found in frozen hydrated analyzed sections. This is accomplished by removing cholesterol and uncovering sulfatide signals, allowing more anatomical regions to be visualized
    corecore