20 research outputs found

    A Phase I Dose Escalation Study of the Triple Angiokinase Inhibitor Nintedanib Combined with Low-Dose Cytarabine in Elderly Patients with Acute Myeloid Leukemia

    Full text link
    Nintedanib (BIBF 1120), a potent multikinase inhibitor of VEGFR-1/-2/-3, FGFR-1/-2/-3 and PDGFR-α/-ÎČ, exerts growth inhibitory and pro-apoptotic effects in myeloid leukemic cells, especially when used in combination with cytarabine. This phase I study evaluated nintedanib in combination with low-dose cytarabine (LDAC) in elderly patients with untreated or relapsed/refractory acute myeloid leukemia (AML) ineligible for intensive chemotherapy in a 3+3 design. Nintedanib (dose levels 100, 150, and 200 mg orally twice daily) and LDAC (20 mg subcutaneous injection twice daily for 10 days) were administered in 28-day cycles. Dose-limiting toxicity (DLT) was defined as non-hematological severe adverse reaction CTC grade ≄ 4 with possible or definite relationship to nintedanib. Between April 2012 and October 2013, 13 patients (median age 73 [range: 62–86] years) were enrolled. One patient did not receive study medication and was replaced. Nine (69%) patients had relapsed or refractory disease and 6 (46%) patients had unfavorable cytogenetics. The most frequently reported treatment-related adverse events (AE) were gastrointestinal events. Twelve SAEs irrespective of relatedness were reported. Two SUSARs were observed, one fatal hypercalcemia and one fatal gastrointestinal infection. Two patients (17%) with relapsed AML achieved a complete remission (one CR, one CRi) and bone marrow blast reductions without fulfilling PR criteria were observed in 3 patients (25%). One-year overall survival was 33%. Nintedanib combined with LDAC shows an adequate safety profile and survival data are promising in a difficult-to-treat patient population. Continuation of this trial with a phase II recommended dose of 2 x 200 mg nintedanib in a randomized, placebo-controlled phase II study is planned. The trial is registered to EudraCT as 2011-001086-41

    Selective inactivation of hypomethylating agents by SAMHD1 provides a rationale for therapeutic stratification in AML.

    Get PDF
    Hypomethylating agents decitabine and azacytidine are regarded as interchangeable in the treatment of acute myeloid leukemia (AML). However, their mechanisms of action remain incompletely understood, and predictive biomarkers for HMA efficacy are lacking. Here, we show that the bioactive metabolite decitabine triphosphate, but not azacytidine triphosphate, functions as activator and substrate of the triphosphohydrolase SAMHD1 and is subject to SAMHD1-mediated inactivation. Retrospective immunohistochemical analysis of bone marrow specimens from AML patients at diagnosis revealed that SAMHD1 expression in leukemic cells inversely correlates with clinical response to decitabine, but not to azacytidine. SAMHD1 ablation increases the antileukemic activity of decitabine in AML cell lines, primary leukemic blasts, and xenograft models. AML cells acquire resistance to decitabine partly by SAMHD1 up-regulation. Together, our data suggest that SAMHD1 is a biomarker for the stratified use of hypomethylating agents in AML patients and a potential target for the treatment of decitabine-resistant leukemia

    Magnesium levels and outcome after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia

    No full text
    Low intake of magnesium has been associated with the occurrence of lymphomas and decreased magnesium levels suppress the cytotoxic function of T cells and natural killer cells in patients with 'X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia' (XMEN) syndrome. These cell types are also important mediators of immune-mediated effects after allogeneic hematopoietic stem cell transplantation. Here, we show that high posttransplant magnesium levels independently associate with a lower incidence of relapse, a higher risk of acute graft-versus-host disease, and a higher non-relapse mortality in 368 patients with acute myeloid leukemia from our center. Magnesium serum levels might impact on donor-cell-mediated immune responses in acute myeloid leukemia

    RNA-Guided CRISPR-Cas9 System-Mediated Engineering of Acute Myeloid Leukemia Mutations

    No full text
    Current acute myeloid leukemia (AML) disease models face severe limitations because most of them induce un-physiological gene expressions that do not represent conditions in AML patients and/or depend on external promoters for regulation of gene expression/repression. Furthermore, many AML models are based on reciprocal chromosomal translocations that only reflect the minority of AML patients, whereas more than 50% of patients have a normal karyotype. The majority of AML, however, is driven by somatic mutations. Thus, identification as well as a detailed molecular and functional characterization of the role of these driver mutations via improved AML models is required for better approaches toward novel targeted therapies. Using the IDH2 R140Q mutation as a model, we present a new effective methodology here using the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to reproduce or remove AML-associated mutations in or from human leukemic cells, respectively, via introduction of a DNA template at the endogenous gene locus via homologous recombination. Our technology represents a precise way for AML modeling to gain insights into AML development and progression and provides a basis for future therapeutic approaches. Keywords: AML, CRISPR-Cas9, leukemia, genome editin

    Prevalence and clinical impact of CD56 and T‐cell marker expression in acute myeloid leukaemia: A single‐centre retrospective analysis

    No full text
    Abstract Flow cytometry‐based immunophenotyping is a mainstay of diagnostics in acute myeloid leukaemia (AML). Aberrant CD56 and T‐cell antigen expression is observed in a fraction subset of AML cases, but the clinical relevance remains incompletely understood. Here, we retrospectively investigated the association of CD56 and T‐cell marker expression with disease‐specific characteristics and outcome of 324 AML patients who received intensive induction therapy at our centre between 2011 and 2019. We found that CD2 expression was associated with abnormal non‐complex karyotype, NPM1 wild‐type status and TP53 mutation. CD2 also correlated with a lower complete remission (CR) rate (47.8% vs. 71.6%, p = 0.03). CyTdT and CD2 were associated with inferior 3‐year event‐free‐survival (EFS) (5.3% vs. 33.5%, p = 0.003 and 17.4% vs. 33.1%, p = 0.02, respectively). CyTdT expression was also correlated with inferior relapse‐free survival (27.3% vs. 48.8%, p = 0.04). In multivariable analyses CD2 positivity was an independent adverse factor for EFS (HR 1.72, p = 0.03). These results indicate a biological relevance of aberrant T‐cell marker expression in AML and provide a rationale to further characterise the molecular origin in T‐lineage‐associated AML

    Deep learning predicts therapy-relevant genetics in acute myeloid leukemia from Pappenheim-stained bone marrow smears

    No full text
    The detection of genetic aberrations is crucial for early therapy decisions in acute myeloid leukemia (AML) and recommended for all patients. Because genetic testing is expensive and time consuming, a need remains for cost-effective, fast, and broadly accessible tests to predict these aberrations in this aggressive malignancy. Here, we developed a novel fully automated end-to-end deep learning pipeline to predict genetic aberrations directly from single-cell images from scans of conventionally stained bone marrow smears already on the day of diagnosis. We used this pipeline to compile a multiterabyte data set of >2 000 000 single-cell images from diagnostic samples of 408 patients with AML. These images were then used to train convolutional neural networks for the prediction of various therapyrelevant genetic alterations. Moreover, we created a temporal test cohort data set of >444 000 single-cell images from further 71 patients with AML. We show that the models from our pipeline can significantly predict these subgroups with high areas under the curve of the receiver operating characteristic. Potential genotype-phenotype links were visualized with 2 different strategies. Our pipeline holds the potential to be used as a fast and inexpensive automated tool to screen patients with AML for therapy-relevant genetic aberrations directly from routine, conventionally stained bone marrow smears already on the day of diagnosis. It also creates a foundation to develop similar approaches for other bone marrow disorders in the future.ISSN:2473-9537ISSN:2473-952

    Aminopeptidase N (CD13): Expression, Prognostic Impact, and Use as Therapeutic Target for Tissue Factor Induced Tumor Vascular Infarction in Soft Tissue Sarcoma

    No full text
    Aminopeptidase N (CD13) is expressed on tumor vasculature and tumor cells. It represents a candidate for targeted therapy, e.g., by truncated tissue factor (tTF)-NGR, binding to CD13, and causing tumor vascular thrombosis. We analyzed CD13 expression by immunohistochemistry in 97 patients with STS who were treated by wide resection and uniform chemo-radio-chemotherapy. Using a semiquantitative score with four intensity levels, CD13 was expressed by tumor vasculature, or tumor cells, or both (composite value, intensity scores 1-3) in 93.9% of the STS. In 49.5% tumor cells, in 48.5% vascular/perivascular cells, and in 58.8%, composite value showed strong intensity score 3 staining. Leiomyosarcoma and synovial sarcoma showed low expression; fibrosarcoma and undifferentiated pleomorphic sarcoma showed high expression. We found a significant prognostic impact of CD13, as high expression in tumor cells or vascular/perivascular cells correlated with better relapse-free survival and overall survival. CD13 retained prognostic significance in multivariable analyses. Systemic tTF-NGR resulted in significant growth reduction of CD13-positive human HT1080 sarcoma cell line xenografts. Our results recommend further investigation of tTF-NGR in STS patients. CD13 might be a suitable predictive biomarker for patient selection

    Characteristics and Outcome of Elderly Patients (>55 Years) with Acute Lymphoblastic Leukemia

    No full text
    Prognosis of elderly ALL patients remains dismal. Here, we retrospectively analyzed the course of 93 patients >55 years with B-precursor (n = 88) or T-ALL (n = 5), who received age-adapted, pediatric-inspired chemotherapy regimens at our center between May 2003 and October 2020. The median age at diagnosis was 65.7 years, and surviving patients had a median follow-up of 3.7 years. CR after induction therapy was documented in 76.5%, while the rate of treatment-related death within 100 days was 6.4%. The OS of the entire cohort at 1 and 3 year(s) was 75.2% (95% CI: 66.4-84.0%) and 47.3% (95% CI: 36.8-57.7%), respectively, while the EFS at 1 and 3 years(s) was 59.0% (95% CI: 48.9-69.0%) and 32.9% (95% CI: 23.0-42.8%), respectively. At 3 years, the cumulative incidence (CI) of relapse was 48.3% (95% CI: 38.9-59.9%), and the CI rate of death in CR was 17.3% (95% CI: 10.9-27.5%). Older age and an ECOG > 2 represented risk factors for inferior OS, while BCR::ABL1 status, immunophenotype, and intensity of chemotherapy did not significantly affect OS. We conclude that intensive treatment is feasible in selected elderly ALL patients, but high rates of relapse and death in CR underline the need for novel therapeutic strategies.ISSN:2072-669
    corecore