1,359 research outputs found

    OVERVIEW OF THE RESEARCH ACTIVITY OF THE DEPARTMENT OF PHYSICAL EDUCATION AND SPORTS AT TRAKIA UNIVERSITY

    Get PDF
    The aim of the study is to examine the most important scientific-research and educational-practical directions in which the lecturers of the "Physical Education and Sports" Department at Trakia University work. Methods: content analysis and synthesis. Results: The Department works in the following directions - Optimization of the learning process, Research of morpho-functional qualities and physical fitness, Body weight control, Food and exercise habits, healthy lifestyle, Motivation for physical activity and sports, Functional diagnostics of spinal curvatures, Prevention of sports injuries, Sports-competitive activity. Conclusion: the analysis of the scientific-research and pedagogical experience of the lecturers of the Physical Education and Sports department found that their activities are aimed at: maintaining and strengthening the health of students throughout the entire period of study; comprehensive physical training of students; education in students of the need for motor activity and sports; creation of movement programs, sports games and appropriate sets of exercises to maintain the functional state of the spine and prevention of spinal deformations; improving the sports skills of student athletes. It also reveals the need to create an educational program for building a healthy lifestyle, to be included in physical education and sports activities

    Dynamic model of gene regulation for the lac operon

    Get PDF
    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution

    Pancreatic Cancer Cell Lines Can Induce Prostaglandin E2 Production from Human Blood Mononuclear Cells

    Get PDF
    Accumulating evidence suggests an important role for cyclooxygenase-2 (COX-2) in the pathogenesis of a wide range of malignancies. The protumorigenic properties of COX-2 are generally thought to be mediated by its product, PGE2, which is shown to promote tumor spread and growth by multiple mechanisms but most importantly through modulation of the local immune response in the tumor. Pancreatic tumor cells produce various amounts of PGE2, some of them being even deficient in COX enzymes or other PGE2 synthases. Here we describe that, beside pancreatic tumor cells or stromal fibroblasts, human peripheral blood mononuclear cells can also produce PGE2 upon coculture with pancreatic cancer cells. Stimulating of cellular cPLA2 within PBMCs by secreted factors, presumably sPLA2, from tumor cells appeared crucial, while the direct contact between PBMCs and PDACs seemed to be dispensable for this effect. Our data is emphasizing the complex interactions participating in the formation of the tolerogenic immune milieu within pancreatic tumors

    Organizational And Economic Characteristics Of Compensations For Temporary Loss Of Capacity To Work

    Get PDF
    The insurance for general diseases with temporary incapacity to work has specific features due to the specifics of the risk it covers. Such diseases are very frequent but usually mild and entail specific consequences, such as reduction or loss of income due to sick leaves. The object of research is the insurance for of general diseases and its subject is the organizational framework and the regulations regarding the benefits for temporary incapacity for work. The aim of this study is to investigate the organizational and economic characteristics of benefits for temporary incapacity for work due to general disease in certain of the European Union and formulate guidelines for organizational development and improvement of the social security system in Bulgaria

    Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    Get PDF
    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT: Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD

    STUDY ON SPORTS INJURIES AMONG STUDENTS - VOLEYBALL ATHLETES

    Get PDF
    ABSTRACT Sports injuries are common, although apart from high-level sportsmanship, sport is practiced mostly as a means of health prevention. Injuries in volleyball have been relatively widely studied, but it is of interest to us to establish the status of the problem in students who are not professional players, but are engaged in volleyball, primarily at the university level. The aim of the study is to determine the type of the most frequently received injuries and their causes in student-competitors in volleyball, by deriving relevant recommendations for their prevention in practice. A survey method was used to achieve the purpose of the study. 84 volleyball players from representative student teams from universities in the Republic of Bulgaria were included in the study. The results of the study show that the most common injuries are of the lower limb, namely of the ankle joint, followed by injuries of the knee joint. Upper extremity injuries are less represented than lower extremity injuries, with more than 80% involving the shoulder joint. The conducted survey outlines trends for the prevention of sports injuries at the university level, allowing recommendations to be made, especially for athletes and their coaches

    Monomeric alpha-synuclein exerts a physiological role in brain ATP synthase

    Get PDF
    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity

    A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals

    Get PDF
    The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era. All eleven events were consistent with being from well-modeled mergers between compact stellar-mass objects: black holes or neutron stars. The data around the time of each of these events have been made publicly available through the gravitational-wave open science center. The entirety of the gravitational-wave strain data from the first and second observing runs have also now been made publicly available. There is considerable interest among the broad scientific community in understanding the data and methods used in the analyses. In this paper, we provide an overview of the detector noise properties and the data analysis techniques used to detect gravitational-wave signals and infer the source properties. We describe some of the checks that are performed to validate the analyses and results from the observations of gravitational-wave events. We also address concerns that have been raised about various properties of LIGO-Virgo detector noise and the correctness of our analyses as applied to the resulting data

    Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars

    Get PDF
    We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437−4715, PSR J0711−6830, and PSR J0737−3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835−4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437−4715) or surpass (for PSR J0711−6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10−8. For each of the five pulsars, we perform targeted searches that assume a tight coupling between the gravitational-wave and electromagnetic signal phase evolution. We also present constraints on PSR J0711−6830, the Crab pulsar, and the Vela pulsar from a search that relaxes this assumption, allowing the gravitational-wave signal to vary from the electromagnetic expectation within a narrow band of frequencies and frequency derivatives

    Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo

    Get PDF
    We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10-4 M·c2 and 1.28×10-1 M·c2 for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data
    corecore