8 research outputs found

    Facilitating the conservation treatment of Eva Hesse's Addendum through practice-based research, including a comparative evaluation of novel cleaning systems

    Get PDF
    Abstract This paper describes the methodology and practice-based research underpinning the development of a successful cleaning strategy for Eva Hesse's sculpture Addendum (1967, Tate Collection T02394). Research strands included: technical and art historical investigations to determine the materials and construction of the work of art and to define the aims of the conservation treatment; the production, soiling and accelerated ageing of mock-up samples using contemporary equivalent materials; and the systematic, iterative evaluation of soiling removal systems, which were further refined for appropriate use on the work of art. The comparative cleaning system evaluation was employed to determine options which offered optimal soiling removal efficacy and posed minimal risk to the work of art. Newly developed Nanorestore Gel® Peggy series (i.e. polyvinyl alcohol (PVA) and polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP)-based hydrogels), designed for the cleaning of modern and contemporary art, were evaluated with a range of other gels, emulsifiers and cosmetic sponges and assessed through a combination of empirical observation, microscopy and spectroscopic techniques. Promising options, combined with tailored aqueous phases derived from trials on mock-up samples, were then evaluated on discreet areas of the sculpture. After extensive testing, the top papier mâché section of Addendum was surface cleaned using an aqueous solution applied with cosmetic sponges, and the ropes were surface cleaned using a modified version of Nanorestore Gel® Peggy 5 (PVA/PVP) loaded with a tailored aqueous solution. The optimisation of this hydrogel, combined with the extensive supporting research, enabled the successful, low-risk, conservation treatment of Addendum for the first time since acquisition

    Reviving WHAAM! a comparative evaluation of cleaning systems for the conservation treatment of Roy Lichtenstein's iconic painting

    Get PDF
    Abstract Roy Lichtenstein's Whaam! (1963) is an iconic artwork in Tate's collection (T00897). Over the past 50 years, the painting has been on almost continuous display and had accrued a layer of deposited soiling, which resulted in the dampening of Lichtenstein's vibrant colours and the masking of numerous subtleties across the painting surface. This paper outlines the design and execution of an optimal soiling removal strategy for this challenging work; utilising collaborative, practice-based research. The conservation treatment employed was derived through an iterative process that reflected and supported the conservation decision-making process. The research strands included: technical and art historical investigations to determine the materials and construction of Whaam! and to define the aims of the conservation treatment; preparation of accelerated aged and artificially soiled test (mock-up) paint samples based on contemporary equivalent materials and a comparative evaluation of a range of established and novel soil-removal systems, followed by further tailoring for use on the work of art. The range of cleaning systems evaluated included free-solvents, gels and emulsifiers; which were documented using star diagrams, digital microscopy and infrared spectroscopy. After a rigorous process of assessment and refinement, the strategy taken forward to Whaam! included the use of a polyvinyl alcohol-based polymeric hydrogel (Nanorestore Gel® Peggy 6), uploaded with tailored aqueous solutions. This process facilitated a low risk, controlled and even-removal of the soiling layer, enabling the successful treatment of this sensitive painting for the first time in the painting's history

    The use of ‘poisonous insecticidal solutions’ in bookbinding: coping with historic pesticide treatments in the archive

    No full text
    Abstract Records from a popular series at The National Archives were found to bear warning labels that they have been bound using a ‘poisonous insecticidal solution’. Research into historic sources suggested that the agents used by bookbinders in the early twentieth century were mercuric chloride, copper sulphate, and beechwood creosote; these may have been replaced by organochlorine pesticides (OCPs) such as dichlorodiphenyltrichloroethane (DDT) mid-century. Analysis by X-ray fluorescence (XRF) spectroscopy confirmed the presence of mercury in labelled, bound items. A number of OCPs were detected using gas chromatography/mass spectrometry (GCMS) including DDT, gamma-hexachlorocyclohexane (Lindane, γ-HCH), Dieldrin, pentachlorophenol (PCP), dichlorodiphenyldichloroethylene (DDE), and 1-chloronaphthalene (1-CP). Tests confirmed the presence of these agents on all items tested regardless of format (e.g. tagged files and bound volumes) or period of creation, suggesting the OCPs were introduced to the items after the binding process. An occupational hygienist (OH) consultancy was engaged to carry out in-situ air monitoring during production, digitisation, and general handling of the items. Risk assessments were developed based on the results, allowing readers and staff to once again access the collection with safety measures including the use of personal protective equipment (PPE)

    ArcHives—combined palynological, genomic and lipid analysis of medieval wax seals

    No full text
    Abstract Beeswax is a product of honeybees (Apis mellifera) and has been used extensively through time, especially as the primary component in medieval sealing wax for authenticating millions of documents. Today, these seals form large collections which, along with the historical information in the documents that the seals are attached to, could be a potential biomolecular archive for honeybees. Here, we investigate the possibility of obtaining biological information from medieval wax seals by performing a palynological and shotgun metagenomic analysis on eight medieval wax seal fragments. Our palynological results show that some pollen and fungal spores remain in the seals, albeit very little. Only one out of eight samples yielded enough DNA for sequencing. Moreover, only minor parts of the DNA reads could be taxonomically identified and were identified as plant and fungal DNA. These results demonstrate some potential for using wax seals as biological archives, but most importantly provides a framework for future studies, in addition to understanding further the degradation of seals as cultural heritage objects. We emphasize that future analyses should focus on other methodologies to retrieve data for historical context or alternatively improve molecular methods and screen sample collections broadly
    corecore