6 research outputs found

    Therapeutic Implications of Mesenchymal Stromal Cells and Their Extracellular Vesicles in Autoimmune Diseases: From Biology to Clinical Applications

    No full text
    Mesenchymal stromal cells (MSCs) are perivascular multipotent stem cells originally identified in the bone marrow (BM) stroma and subsequently in virtually all vascularized tissues. Because of their ability to differentiate into various mesodermal lineages, their trophic properties, homing capacity, and immunomodulatory functions, MSCs have emerged as attractive candidates in tissue repair and treatment of autoimmune disorders. Accumulating evidence suggests that the beneficial effects of MSCs may be primarily mediated via a number of paracrine-acting soluble factors and extracellular vesicles (EVs). EVs are membrane-coated vesicles that are increasingly being acknowledged as playing a key role in intercellular communication via their capacity to carry and deliver their cargo, consisting of proteins, nucleic acids, and lipids to recipient cells. MSC-EVs recapitulate the functions of the cells they originate, including immunoregulatory effects but do not seem to be associated with the limitations and concerns of cell-based therapies, thereby emerging as an appealing alternative therapeutic option in immune-mediated disorders. In the present review, the biology of MSCs will be outlined and an overview of their immunomodulatory functions will be provided. In addition, current knowledge on the features of MSC-EVs and their immunoregulatory potential will be summarized. Finally, therapeutic applications of MSCs and MSC-EVs in autoimmune disorders will be discussed

    The Role of Bone Marrow Mesenchymal Stem Cell Derived Extracellular Vesicles (MSC-EVs) in Normal and Abnormal Hematopoiesis and Their Therapeutic Potential

    No full text
    Mesenchymal stem cells (MSCs) represent a heterogeneous cellular population responsible for the support, maintenance, and regulation of normal hematopoietic stem cells (HSCs). In many hematological malignancies, however, MSCs are deregulated and may create an inhibitory microenvironment able to induce the disease initiation and/or progression. MSCs secrete soluble factors including extracellular vesicles (EVs), which may influence the bone marrow (BM) microenvironment via paracrine mechanisms. MSC-derived EVs (MSC-EVs) may even mimic the effects of MSCs from which they originate. Therefore, MSC-EVs contribute to the BM homeostasis but may also display multiple roles in the induction and maintenance of abnormal hematopoiesis. Compared to MSCs, MSC-EVs have been considered a more promising tool for therapeutic purposes including the prevention and treatment of Graft Versus Host Disease (GVHD) following allogenic HSC transplantation (HSCT). There are, however, still unanswered questions such as the molecular and cellular mechanisms associated with the supportive effect of MSC-EVs, the impact of the isolation, purification, large-scale production, storage conditions, MSC source, and donor characteristics on MSC-EV biological effects as well as the optimal dose and safety for clinical usage. This review summarizes the role of MSC-EVs in normal and malignant hematopoiesis and their potential contribution in treating GVHD

    Myeloid-Derived Suppressor Cells (MDSC) in the Umbilical Cord Blood: Biological Significance and Possible Therapeutic Applications

    No full text
    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that suppress immune responses in cancer, infection, and trauma. They mainly act by inhibiting T-cells, natural-killer cells, and dendritic cells, and also by inducing T-regulatory cells, and modulating macrophages. Although they are mostly associated with adverse prognosis of the underlying disease entity, they may display positive effects in specific situations, such as in allogeneic hematopoietic stem cell transplantation (HSCT), where they suppress graft-versus-host disease (GVHD). They also contribute to the feto-maternal tolerance, and in the fetus growth process, whereas several pregnancy complications have been associated with their defects. Human umbilical cord blood (UCB) is a source rich in MDSCs and their myeloid progenitor cells. Recently, a number of studies have investigated the generation, isolation, and expansion of UCB-MDSCs for potential clinical application associated with their immunosuppressive properties, such as GVHD, and autoimmune and inflammatory diseases. Given that a significant proportion of UCB units in cord blood banks are not suitable for clinical use in HSCT, they might be used as a significant source of MDSCs for research and clinical purposes. The current review summarizes the roles of MDSCs in the UCB, as well as their promising applications

    New Perspectives on Myeloid-Derived Suppressor Cells and Their Emerging Role in Haematology

    No full text
    Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid origin that have gained researchers’ attention, as they constitute promising biomarkers and targets for novel therapeutic strategies (i.e., blockage of development, differentiation, depletion, and deactivation) in several conditions, including neoplastic, autoimmune, infective, and inflammatory diseases, as well as pregnancy, obesity, and graft rejection. They are characterised in humans by the typical immunophenotype of CD11b+CD33+HLA-DR–/low and immune-modulating properties leading to decreased T-cell proliferation, induction of T-regulatory cells (T-regs), hindering of natural killer (NK) cell functionality, and macrophage M2-polarisation. The research in the field is challenging, as there are still difficulties in defining cell-surface markers and gating strategies that uniquely identify the different populations of MDSCs, and the currently available functional assays are highly demanding. There is evidence that MDSCs display altered frequency and/or functionality and could be targeted in immune-mediated and malignant haematologic diseases, although there is a large variability of techniques and results between different laboratories. This review presents the current literature concerning MDSCs in a clinical point of view in an attempt to trigger future investigation by serving as a guide to the clinical haematologist in order to apply them in the context of precision medicine as well as the researcher in the field of experimental haematology
    corecore